Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
J Evol Biol ; 31(4): 572-586, 2018 04.
Article in English | MEDLINE | ID: mdl-29380455

ABSTRACT

Temporal fluctuations in the strength and direction of selection are often proposed as a mechanism that slows down evolution, both over geological and contemporary timescales. Both the prevalence of fluctuating selection and its relevance for evolutionary dynamics remain poorly understood however, especially on contemporary timescales: unbiased empirical estimates of variation in selection are scarce, and the question of how much of the variation in selection translates into variation in genetic change has largely been ignored. Using long-term individual-based data for a wild rodent population, we quantify the magnitude of fluctuating selection on body size. Subsequently, we estimate the evolutionary dynamics of size and test for a link between fluctuating selection and evolution. We show that, over the past 11 years, phenotypic selection on body size has fluctuated significantly. However, the strength and direction of genetic change have remained largely constant over the study period; that is, the rate of genetic change was similar in years where selection favoured heavier vs. lighter individuals. This result suggests that over shorter timescales, fluctuating selection does not necessarily translate into fluctuating evolution. Importantly however, individual-based simulations show that the correlation between fluctuating selection and fluctuating evolution can be obscured by the effect of drift, and that substantially more data are required for a precise and accurate estimate of this correlation. We identify new challenges in measuring the coupling between selection and evolution, and provide methods and guidelines to overcome them.


Subject(s)
Arvicolinae/genetics , Biological Evolution , Selection, Genetic , Animals
2.
Rev Sci Instrum ; 84(10): 103510, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24182111

ABSTRACT

Imaging plates from Fuji (BAS-SR, MS, and TR types) are phosphor films routinely used in ultra high intensity laser experiments. However, few data are available on the absolute IP response functions to ionizing particles. We have previously measured and modeled the IP response functions to protons. We focus here on the determination of the responses to photons, electrons, and (4)He particles. The response functions are obtained on an energy range going from a few tens of keV to a few tens of MeV and are compared to available data. The IP sensitivities to the different ionizing particles demonstrate a quenching effect depending on the particle stopping power.

3.
Rev Sci Instrum ; 84(1): 013508, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23387651

ABSTRACT

We have measured the responses of Fuji MS, SR, and TR imaging plates (IPs) to protons with energies ranging from 0.6 to 3.2 MeV. Monoenergetic protons were produced with the 3.5 MV AIFIRA (Applications Interdisciplinaires de Faisceaux d'Ions en Région Aquitaine) accelerator at the Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG). The IPs were irradiated with protons backscattered off a tantalum target. We present the photo-stimulated luminescence response of the IPs together with the fading measurements for these IPs. A method is applied to allow correction of fading effects for variable proton irradiation duration. Using the IP fading corrections, a model of the IP response function to protons was developed. The model enables extrapolation of the IP response to protons up to proton energies of 10 MeV. Our work is finally compared to previous works conducted on Fuji TR IP response to protons.

SELECTION OF CITATIONS
SEARCH DETAIL
...