Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Thromb Haemost ; 22(7): 1936-1946, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38554935

ABSTRACT

BACKGROUND: Laboratory diagnosis of immune-mediated thrombotic thrombocytopenic purpura (iTTP) remains challenging when ADAMTS-13 activity ranges between 10% and 20%. To prevent misdiagnosis, open ADAMTS-13 conformation gained clinical attention as a novel biomarker, especially to diagnose acute iTTP in patients with diagnostic undecisive ADAMTS-13 activity. Plasma ADAMTS-13 conformation analysis corrects for ADAMTS-13 antigen, with both parameters being characterized in enzyme-linked immunosorbent assay (ELISA)-based reference assays requiring expert technicians. OBJECTIVES: To design ADAMTS-13 antigen and conformation assays on automated, easy-to-use fiber optic surface plasmon resonance (FO-SPR) technology to promote assay accessibility and diagnose challenging iTTP patients. METHODS: ADAMTS-13 antigen and conformation assays were designed on FO-SPR technology. Plasma of 20 healthy donors and 20 acute iTTP patients were quantified, and data from FO-SPR and ELISA reference assays were compared. RESULTS: Following assay design, both antigen and conformation FO-SPR assays were optimized and characterized, presenting strong analytical sensitivity (detection limit of 0.001 µg/mL) and repeatability (interassay variation of 14.4%). Comparative analysis suggested positive correlation (Spearman r of 0.92) and good agreement between FO-SPR and ELISA assays. As expected, FO-SPR assays showed a closed or open ADAMTS-13 conformation in healthy donors and acute iTTP patients, respectively. CONCLUSION: Both ADAMTS-13 antigen and conformation assays were transferred onto automated, easy-to-use FO-SPR technology, displaying potent analytical sensitivity and reproducibility. ADAMTS-13 antigen and conformation were determined for healthy donors and acute iTTP patients showing strong correlation with ELISA reference. Introducing FO-SPR technology in clinical context could support routine diagnosis of acute iTTP patients, notably when ADAMTS-13 activity fluctuates between 10% and 20%.


Subject(s)
ADAMTS13 Protein , Enzyme-Linked Immunosorbent Assay , Purpura, Thrombotic Thrombocytopenic , Surface Plasmon Resonance , ADAMTS13 Protein/blood , ADAMTS13 Protein/immunology , Humans , Purpura, Thrombotic Thrombocytopenic/diagnosis , Purpura, Thrombotic Thrombocytopenic/blood , Purpura, Thrombotic Thrombocytopenic/immunology , Enzyme-Linked Immunosorbent Assay/methods , Case-Control Studies , Biomarkers/blood , Reproducibility of Results , Protein Conformation , Predictive Value of Tests , Immunoassay/methods , Automation, Laboratory , Female , Male
2.
J Clin Med ; 12(19)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37834813

ABSTRACT

Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare medical emergency for which a correct and early diagnosis is essential. As a severe deficiency in A Disintegrin And Metalloproteinase with ThromboSpondin type 1 repeats, member 13 (ADAMTS13) is the underlying pathophysiology, diagnostic strategies require timely monitoring of ADAMTS13 parameters to differentiate TTP from alternative thrombotic microangiopathies (TMAs) and to guide initial patient management. Assays for conventional ADAMTS13 testing focus on the enzyme activity and presence of (inhibitory) anti-ADAMTS13 antibodies to discriminate immune-mediated TTP (iTTP) from congenital TTP and guide patient management. However, diagnosis of iTTP remains challenging when patients present borderline ADAMTS13 activity. Therefore, additional biomarkers would be helpful to support correct clinical judgment. Over the last few years, the evaluation of ADAMTS13 conformation has proven to be a valuable tool to confirm the diagnosis of acute iTTP when ADAMST13 activity is between 10 and 20%. Screening of ADAMTS13 conformation during long-term patient follow-up suggests it is a surrogate marker for undetectable antibodies. Moreover, some non-ADAMTS13 parameters gained notable interest in predicting disease outcome, proposing meticulous follow-up of iTTP patients. This review summarizes non-ADAMTS13 biomarkers for which inclusion in routine clinical testing could largely benefit differential diagnosis and follow-up of iTTP patients.

3.
Res Pract Thromb Haemost ; 7(6): 102171, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37711907

ABSTRACT

Background: Thrombotic thrombocytopenic purpura (TTP) is characterized by severe ADAMTS-13 activity deficiency (<10%). Diagnostic testing is challenging because of unavailability, high cost, and expert technician requirement of ADAMTS-13 enzyme assays. Cost-effective, automated fiber-optic surface plasmon resonance (FO-SPR) platforms show potential for developing diagnostic tests. Yet, FO-SPR has never been explored to measure enzymatic activities. Objectives: To develop an easy-to-use ADAMTS-13 activity assay utilizing optical fibers to rapidly diagnose TTP. Methods: The ADAMTS-13 activity assay was designed and optimized using FO-SPR technology based on a previously described enzyme-linked immunosorbent assay setup. A calibration curve was generated to quantify ADAMTS-13 activity in plasma of healthy donors and patients with acute immune-mediated TTP (iTTP), hemolytic uremic syndrome, or sepsis. ADAMTS-13 activity data from FO-SPR and fluorescence resonance energy transfer-based strategies (FRETS)-VWF73 reference assays were compared. Results: After initial assay development, optimization improved read-out magnitude and signal-to-noise ratio and reduced variation. Further characterization demonstrated a detection limit (6.8%) and inter-assay variation (Coefficient of variation, 7.2%) that showed good analytical sensitivity and repeatability. From diverse plasma samples, only plasma from patients with acute iTTP showed ADAMTS-13 activities below 10%. Strong Pearson correlation (r = 0.854) between FO-SPR and reference FRETS-VWF73 assays were observed for all measured samples. Conclusions: A fast ADAMTS-13 activity assay was designed onto automated FO-SPR technology. Optimization resulted in sensitive ADAMTS-13 activity measurements with a detection limit enabling clinical diagnosis of TTP within 3 hours. The FO-SPR assay proved strong correlation with the reference FRETS-VWF73 assay. For the first time, this assay demonstrated the capacity of FO-SPR technology to measure enzymatic activity in pre-clinical context.

4.
J Thromb Haemost ; 19(9): 2248-2255, 2021 09.
Article in English | MEDLINE | ID: mdl-33728786

ABSTRACT

BACKGROUND: Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is caused by inhibitory and/or clearing anti-ADAMTS-13 (A Disintegrin and Metalloprotease with ThromboSpondin type 1 repeats, member 13) autoantibodies. To determine the presence and total level of anti-ADAMTS-13 autoantibodies, commercial and in-house developed ELISAs are performed. However, different ELISA methods vary in relation to the presentation of recombinant (r)ADAMTS-13 and the detection method of the anti-ADAMTS-13 autoantibodies. Currently, the influence of those different approaches on anti-ADAMTS-13 autoantibody titers is not known. OBJECTIVES: To assess the influence of different ADAMTS-13 presentation- and autoantibody detection methods on anti-ADAMTS-13 autoantibody titers in ELISA. MATERIALS/METHODS: Anti-ADAMTS-13 autoantibody titers from 18 iTTP patients were determined using four different set-ups of anti-ADAMTS-13 autoantibody ELISAs. The ELISAs varied in the used presentation of rADAMTS-13 (directly coated full-length rADAMTS-13, directly coated rMDTCS and rT2C2, or antibody-captured full-length rADAMTS-13) and the detection antibodies (polyclonal anti-human IgG or monoclonal anti-human IgG1-4 antibodies). RESULTS: Strong correlations between the different anti-ADAMTS-13 autoantibody ELISA approaches were observed, when using polyclonal anti-human IgG detection antibodies recognizing all IgG subclasses similarly, independent of the method of rADAMTS-13 presentation. Anti-ADAMTS-13 autoantibody titers correlated less when using a mixture of monoclonal anti-human IgG1-4 , because not all IgG subclasses were recognized with similar affinities. CONCLUSION: Anti-ADAMTS-13 autoantibody levels using different methods of rADAMTS-13 presentation strongly correlate. However, the levels of anti-ADAMTS-13 autoantibodies are highly dependent on the detection antibody used, which should detect all IgG subclasses (IgG1-4 ) equally well.


Subject(s)
Purpura, Thrombotic Thrombocytopenic , Thrombospondin 1 , ADAMTS13 Protein , Autoantibodies , Enzyme-Linked Immunosorbent Assay , Humans , Purpura, Thrombotic Thrombocytopenic/diagnosis
5.
Anal Chem ; 92(20): 13880-13887, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32929962

ABSTRACT

Autoantibodies are key biomarkers in clinical diagnosis of autoimmune diseases routinely detected by enzyme-linked immunosorbent assays (ELISAs). However, the complexity of these assays is limiting their use in routine diagnostics. Fiber optic-surface plasmon resonance (FO-SPR) can overcome these limitations, but improved surface chemistries are still needed to guarantee detection of autoantibodies in complex matrices. In this paper, we describe the development of an FO-SPR immunoassay for the detection of autoantibodies in plasma samples from immune-mediated thrombotic thrombocytopenic purpura (iTTP) patients. Hereto, hexahistidine-tagged recombinant ADAMTS13 (rADAMTS13-His6) was immobilized on nitrilotriacetic acid (NTA)-coated FO probes chelated by cobalt (Co(III)) and exposed to anti-ADAMTS13 autoantibodies. Initial studies were performed to optimize rADAMTS13-His6 immobilization and to confirm the specificity of the immunoassay for detection of anti-ADAMTS13 autoantibodies with FO-SPR. The performance of the immunoassay was then evaluated by comparing Co(III)- and nickel (Ni(II))-NTA stabilized surfaces, confirming the stable immobilization of the antigen in Co(III)-NTA-functionalized FO probes. A calibration curve was prepared with a dilution series of a cloned human anti-ADAMTS13 autoantibody in ADAMTS13-depleted plasma resulting in an average interassay coefficient of variation of 7.1% and a limit of detection of 0.24 ng/mL. Finally, the FO-SPR immunoassay was validated using seven iTTP patient plasma samples, resulting in an excellent correlation with an in-house-developed ELISA (r = 0.973). In summary, the specificity and high sensitivity in combination with a short time-to-result (2.5 h compared to 4-5 h for a regular ELISA) make the FO-SPR immunoassay a powerful assay for routine diagnosis of iTTP and with extension for any other autoimmune disease.


Subject(s)
Autoantibodies/blood , Biosensing Techniques/methods , Copper/chemistry , Nitrilotriacetic Acid/chemistry , Surface Plasmon Resonance , ADAMTS13 Protein/chemistry , ADAMTS13 Protein/genetics , ADAMTS13 Protein/metabolism , Fiber Optic Technology , Histidine/genetics , Histidine/metabolism , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immunoassay , Limit of Detection , Oligopeptides/genetics , Oligopeptides/metabolism , Purpura, Thrombotic Thrombocytopenic/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...