Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol Evol ; 15(3)2023 03 03.
Article in English | MEDLINE | ID: mdl-36881851

ABSTRACT

The Ascomycota form the largest phylum in the fungal kingdom and show a wide diversity of lifestyles, some involving associations with plants. Genomic data are available for many ascomycetes that are pathogenic to plants, but endophytes, which are asymptomatic inhabitants of plants, are relatively understudied. Here, using short- and long-read technologies, we have sequenced and assembled genomes for 15 endophytic ascomycete strains from CABI's culture collections. We used phylogenetic analysis to refine the classification of taxa, which revealed that 7 of our 15 genome assemblies are the first for the genus and/or species. We also demonstrated that cytometric genome size estimates can act as a valuable metric for assessing assembly "completeness", which can easily be overestimated when using BUSCOs alone and has broader implications for genome assembly initiatives. In producing these new genome resources, we emphasise the value of mining existing culture collections to produce data that can help to address major research questions relating to plant-fungal interactions.


Subject(s)
Ascomycota , Endophytes , Phylogeny , Endophytes/genetics , Ascomycota/genetics , Genomics
2.
CABI Agric Biosci ; 4(1): 53, 2023.
Article in English | MEDLINE | ID: mdl-38800117

ABSTRACT

Plant microbiomes are the microbial communities essential to the functioning of the phytobiome-the system that consist of plants, their environment, and their associated communities of organisms. A healthy, functional phytobiome is critical to crop health, improved yields and quality food. However, crop microbiomes are relatively under-researched, and this is associated with a fundamental need to underpin phytobiome research through the provision of a supporting infrastructure. The UK Crop Microbiome Cryobank (UKCMC) project is developing a unique, integrated and open-access resource to enable the development of solutions to improve soil and crop health. Six economically important crops (Barley, Fava Bean, Oats, Oil Seed Rape, Sugar Beet and Wheat) are targeted, and the methods as well as data outputs will underpin research activity both in the UK and internationally. This manuscript describes the approaches being taken, from characterisation, cryopreservation and analysis of the crop microbiome through to potential applications. We believe that the model research framework proposed is transferable to different crop and soil systems, acting not only as a mechanism to conserve biodiversity, but as a potential facilitator of sustainable agriculture systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...