Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 50(47): 17524-17537, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34796893

ABSTRACT

The new, quaternary diamond-like semiconductor (DLS) Cu4MnGe2S7 was prepared at high-temperature from a stoichiometric reaction of the elements under vacuum. Single crystal X-ray diffraction data were used to solve and refine the structure in the polar space group Cc. Cu4MnGe2S7 features [Ge2S7]6- units and adopts the Cu5Si2S7 structure type that can be considered a derivative of the hexagonal diamond structure. The DLS Cu2MnGeS4 with the wurtz-stannite structure was similarly prepared at a lower temperature. The achievement of relatively phase-pure samples, confirmed by X-ray powder diffraction data, was nontrival as differential thermal analysis shows an incongruent melting behaviour for both compounds at relatively high temperature. The dark red Cu2MnGeS4 and Cu4MnGe2S7 compounds exhibit direct optical bandgaps of 2.21 and 1.98 eV, respectively. The infrared (IR) spectra indicate potentially wide windows of optical transparency up to 25 µm for both materials. Using the Kurtz-Perry powder method, the second-order nonlinear optical susceptibility, χ(2), values for Cu2MnGeS4 and Cu4MnGe2S7 were estimated to be 16.9 ± 2.0 pm V-1 and 2.33 ± 0.86 pm V-1, respectively, by comparing with an optical-quality standard reference material, AgGaSe2 (AGSe). Cu2MnGeS4 was found to be phase matchable at λ = 3100 nm, whereas Cu4MnGe2S7 was determined to be non-phase matchable at λ = 1600 nm. The weak SHG response of Cu4MnGe2S7 precluded phase-matching studies at longer wavelengths. The laser-induced damage threshold (LIDT) for Cu2MnGeS4 was estimated to be ∼0.1 GW cm-2 at λ = 1064 nm (pulse width: τ = 30 ps), while the LIDT for Cu4MnGe2S7 could not be ascertained due to its weak response. The significant variance in NLO properties can be reasoned using the results from electronic structure calculations.

2.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 7): 1117-1121, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32695463

ABSTRACT

The quaternary thio-germanates Cu4FeGe2S7 (tetra-copper iron digermanium hepta-sulfide) and Cu4CoGe2S7 (tetra-copper cobalt digermanium hepta-sulfide) were prepared in evacuated fused-silica ampoules via high-temperature, solid-state synthesis using stoichiometric amounts of the elements at 1273 K. These isostructural compounds crystallize in the Cu4NiSi2S7 structure type, which can be considered as a superstructure of cubic diamond or sphalerite. The monovalent (Cu+), divalent (Fe2+ or Co2+) and tetra-valent (Ge4+) cations adopt tetra-hedral geometries, each being surrounded by four S2- anions. The divalent cation and one of the sulfide ions lie on crystallographic twofold axes. These tetra-hedra share corners to create a three-dimensional framework structure. All of the tetra-hedra align along the same crystallographic direction, rendering the structure non-centrosymmetric and polar (space group C2). Analysis of X-ray powder diffraction data revealed that the structures are the major phase of the reaction products. Thermal analysis indicated relatively high melting temperatures, near 1273 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...