Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 14(631): eabg8027, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35138911

ABSTRACT

T cell receptor (TCR)-based therapy has the potential to induce durable clinical responses in patients with cancer by targeting intracellular tumor antigens with high sensitivity and by promoting T cell survival. However, the need for TCRs specific for shared oncogenic antigens and the need for manufacturing protocols able to redirect T cell specificity while preserving T cell fitness remain limiting factors. By longitudinal monitoring of T cell functionality and dynamics in 15 healthy donors, we isolated 19 TCRs specific for Wilms' tumor antigen 1 (WT1), which is overexpressed by several tumor types. TCRs recognized several peptides restricted by common human leukocyte antigen (HLA) alleles and displayed a wide range of functional avidities. We selected five high-avidity HLA-A*02:01-restricted TCRs, three that were specific to the less explored immunodominant WT137-45 and two that were specific to the noncanonical WT1-78-64 epitopes, both naturally processed by primary acute myeloid leukemia (AML) blasts. With CRISPR-Cas9 genome editing tools, we combined TCR-targeted integration into the TCR α constant (TRAC) locus with TCR ß constant (TRBC) knockout, thus avoiding TCRαß mispairing and maximizing TCR expression and function. The engineered lymphocytes were enriched in memory stem T cells. A unique WT137-45-specific TCR showed antigen-specific responses and efficiently killed AML blasts, acute lymphoblastic leukemia blasts, and glioblastoma cells in vitro and in vivo in the absence of off-tumor toxicity. T cells engineered to express this receptor are being advanced into clinical development for AML immunotherapy and represent a candidate therapy for other WT1-expressing tumors.


Subject(s)
Leukemia, Myeloid, Acute , WT1 Proteins , Antigens, Neoplasm , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , T-Lymphocytes , WT1 Proteins/genetics , WT1 Proteins/metabolism
2.
Sci Transl Med ; 14(628): eabg3072, 2022 01 19.
Article in English | MEDLINE | ID: mdl-35044789

ABSTRACT

Immunotherapy with chimeric antigen receptor (CAR)­engineered T cells showed exceptional successes in patients with refractory B cell malignancies. However, first-in-human studies in solid tumors revealed unique hurdles contributing to poor demonstration of efficacy. Understanding the determinants of tumor recognition by CAR T cells should translate into the design of strategies that can overcome resistance. Here, we show that multiple carcinomas express extracellular N-glycans, whose abundance negatively correlates with CAR T cell killing. By knocking out mannoside acetyl-glucosaminyltransferase 5 (MGAT5) in pancreatic adenocarcinoma (PAC), we showed that N-glycans protect tumors from CAR T cell killing by interfering with proper immunological synapse formation and reducing transcriptional activation, cytokine production, and cytotoxicity. To overcome this barrier, we exploited the high metabolic demand of tumors to safely inhibit N-glycans synthesis with the glucose/mannose analog 2-deoxy-d-glucose (2DG). Treatment with 2DG disrupts the N-glycan cover on tumor cells and results in enhanced CAR T cell activity in different xenograft mouse models of PAC. Moreover, 2DG treatment interferes with the PD-1­PD-L1 axis and results in a reduced exhaustion profile of tumor-infiltrating CAR T cells in vivo. The combined 2DG and CAR T cell therapy was successful against multiple carcinomas besides PAC, including those arising from the lung, ovary, and bladder, and with different clinically relevant CAR specificities, such as CD44v6 and CEA. Overall, our results indicate that tumor N-glycosylation regulates the quality and magnitude of CAR T cell responses, paving the way for the rational design of improved therapies against solid malignancies.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Receptors, Chimeric Antigen , Adenocarcinoma/metabolism , Animals , Cell Line, Tumor , Female , Humans , Immunotherapy, Adoptive/methods , Mice , Pancreatic Neoplasms/metabolism , Polysaccharides/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes , Xenograft Model Antitumor Assays
3.
Disaster Med Public Health Prep ; 15(1): 99-104, 2021 02.
Article in English | MEDLINE | ID: mdl-31928571

ABSTRACT

Simulation is an effective teaching tool in disaster medicine education, and the use of simulated patients (SPs) is a frequently adopted technique. Throughout this article, we critically analyzed the use and the preparation of SPs in the context of simulation in disaster medicine. A systematic review of English, French, and Italian language articles was performed on PubMed and Google Scholar. Studies were included if reporting the use of SPs in disaster medicine training. Exclusion criteria included abstracts, citations, theses, articles not dealing with disaster medicine, and articles not using human actors in simulation. Eighteen papers were examined. All the studies were conducted in Western countries. Case reports represent 50% of references. Only in 44.4% of articles, the beneficiaries of simulations were students, while in most of cases were professionals. In 61.1% of studies SPs were moulaged, and in 72.2%, a method to simulate victim symptoms was adopted. Ten papers included a previous training for SPs and their involvement in the participants' assessment at the end of the simulation. Finally, this systematic review revealed that there is still a lack of uniformity about the use of SPs in the disaster medicine simulations.


Subject(s)
Disaster Medicine , Clinical Competence , Disaster Medicine/education , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...