Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
2.
J Fish Biol ; 102(6): 1340-1357, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36929483

ABSTRACT

The authors assessed the importance of the round goby Neogobius melanostomus as prey for three native predatory fish species, Atlantic cod Gadus morhua, European perch Perca fluviatilis and northern pike Esox lucius, in a northern and southern area of the Baltic Proper, using a combination of visual analysis and DNA metabarcoding of predator stomach contents. To explore the influence of environmental abundances of N. melanostomus on predation, they related the occurrence of N. melanostomus in predator diets to its abundance in survey fishing. Gadus morhua and E. lucius in the southern area showed the highest tendency to feed on N. melanostomus when it was abundant, as N. melanostomus occurred in up to 100% of stomachs and constituted up to 88% of the total diet volume proportion. The diet contribution of N. melanostomus was associated with N. melanostomus abundances for G. morhua and E. lucius, and when N. melanostomus was abundant, these predators exhibited lower prey richness and a higher degree of piscivory. G. morhua and P. fluviatilis also fed less on crustacean prey when N. melanostomus was abundant. The high importance of N. melanostomus in diets of native fish predators may modify indirect interactions between N. melanostomus and native prey species in invaded coastal communities.


Subject(s)
Perches , Perciformes , Animals , Ecosystem , Introduced Species , Diet/veterinary
3.
Ambio ; 51(7): 1687-1697, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35092571

ABSTRACT

Ecosystem-based management requires understanding of food webs. Consequently, assessment of food web status is mandatory according to the European Union's Marine Strategy Framework Directive (MSFD) for EU Member States. However, how to best monitor and assess food webs in practise has proven a challenging question. Here, we review and assess the current status of food web indicators and food web models, and discuss whether the models can help addressing current shortcomings of indicator-based food web assessments, using the Baltic Sea as an example region. We show that although the MSFD food web assessment was designed to use food web indicators alone, they are currently poorly fit for the purpose, because they lack interconnectivity of trophic guilds. We then argue that the multiple food web models published for this region have a high potential to provide additional coherence to the definition of good environmental status, the evaluation of uncertainties, and estimates for unsampled indicator values, but we also identify current limitations that stand in the way of more formal implementation of this approach. We close with a discussion of which current models have the best capacity for this purpose in the Baltic Sea, and of the way forward towards the combination of measurable indicators and modelling approaches in food web assessments.


Subject(s)
Ecosystem , Food Chain , Baltic States , Environmental Monitoring , Policy , Uncertainty
4.
Ecol Evol ; 11(9): 4035-4045, 2021 May.
Article in English | MEDLINE | ID: mdl-33976792

ABSTRACT

Benthic species and communities are linked to pelagic zooplankton through life-stages encompassing both benthic and pelagic habitats and through a mutual dependency on primary producers as a food source. Many zooplankton taxa contribute to the sedimentary system as benthic eggs. Our main aim was to investigate the nature of the population level biotic interactions between and within these two seemingly independent communities, both dependent on the pelagic primary production, while simultaneously accounting for environmental drivers (salinity, temperature, and oxygen conditions). To this end, we applied multivariate autoregressive state-space models to long (1966-2007) time series of annual abundance data, comparing models with and without interspecific interactions, and models with and without environmental variables included. We were not able to detect any direct coupling between sediment-dwelling benthic taxa and pelagic copepods and cladocerans on the annual scale, but the most parsimonious model indicated that interactions within the benthic community are important. There were also positive residual correlations between the copepods and cladocerans potentially reflecting the availability of a shared resource or similar seasonal dependence, whereas both groups tended to correlate negatively with the zoobenthic taxa. The most notable single interaction within the benthic community was a tendency for a negative effect of Limecola balthica on the amphipods Monoporeia affinis and Pontoporeia femorata which can help explain the observed decrease in amphipods due to increased competitive interference.

5.
Ambio ; 50(4): 753-758, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33537960

ABSTRACT

Eutrophication, i.e. nutrient over-enrichment, has been a topic for academic and societal debate for the past five decades both on land and in aquatic systems fed by nutrients as diffuse loading from agricultural lands and as wastewater from industrial and municipal point-sources. The use of nutrients (primarily nitrogen and phosphorus) in excess became a problem with the onset of large-scale production and use of artificial fertilizers after World War II, and the effects on the aquatic environment became obvious some two to three decades later. In this Perspective, four seminal papers on eutrophication are discussed in light of the current knowledge of the problem, including future perspectives and outlooks in the light of global climate change and the demand for science-based holistic ecosystem-level policies and management options.


Subject(s)
Anniversaries and Special Events , Ecosystem , Eutrophication , Nitrogen , Phosphorus
6.
J Anim Ecol ; 90(5): 1205-1216, 2021 05.
Article in English | MEDLINE | ID: mdl-33608888

ABSTRACT

Studying how food web structure and function vary through time represents an opportunity to better comprehend and anticipate ecosystem changes. Yet, temporal studies of highly resolved food web structure are scarce. With few exceptions, most temporal food web studies are either too simplified, preventing a detailed assessment of structural properties or binary, missing the temporal dynamics of energy fluxes among species. Using long-term, multi-trophic biomass data coupled with highly resolved information on species feeding relationships, we analysed food web dynamics in the Gulf of Riga (Baltic Sea) over more than three decades (1981-2014). We combined unweighted (topology-based) and weighted (biomass- and flux-based) food web approaches, first, to unravel how distinct descriptors can highlight differences (or similarities) in food web dynamics through time, and second, to compare temporal dynamics of food web structure and function. We find that food web descriptors vary substantially and distinctively through time, likely reflecting different underlying ecosystem processes. While node- and link-weighted metrics reflect changes related to alterations in species dominance and fluxes, unweighted metrics are more sensitive to changes in species and link richness. Comparing unweighted, topology-based metrics and flux-based functions further indicates that temporal changes in functions cannot be predicted using unweighted food web structure. Rather, information on species population dynamics and weighted, flux-based networks should be included to better comprehend temporal food web dynamics. By integrating unweighted, node- and link-weighted metrics, we here demonstrate how different approaches can be used to compare food web structure and function, and identify complementary patterns of change in temporal food web dynamics, which enables a more complete understanding of the ecological processes at play in ecosystems undergoing change.


Subject(s)
Ecosystem , Food Chain , Animals , Biomass , Population Dynamics
7.
Proc Natl Acad Sci U S A ; 117(34): 20363-20371, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32817527

ABSTRACT

The ocean is a lifeline for human existence, but current practices risk severely undermining ocean sustainability. Present and future social-ecological challenges necessitate the maintenance and development of knowledge and action by stimulating collaboration among scientists and between science, policy, and practice. Here we explore not only how such collaborations have developed in the Nordic countries and adjacent seas but also how knowledge from these regions contributes to an understanding of how to obtain a sustainable ocean. Our collective experience may be summarized in three points: 1) In the absence of long-term observations, decision-making is subject to high risk arising from natural variability; 2) in the absence of established scientific organizations, advice to stakeholders often relies on a few advisors, making them prone to biased perceptions; and 3) in the absence of trust between policy makers and the science community, attuning to a changing ocean will be subject to arbitrary decision-making with unforeseen and negative ramifications. Underpinning these observations, we show that collaboration across scientific disciplines and stakeholders and between nations is a necessary condition for appropriate actions.

8.
J Fish Biol ; 96(3): 669-680, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31950495

ABSTRACT

The aim of this study was to examine how the presence of a predator and an interspecific competitor influence the habitat use of adult perch (Perca fluviatilis; size: 15.1 ± 0.5 cm) when given the choice between two adjacent habitats. By conducting aquarium experiments, the habitat occupancy of P. fluviatilis was documented in the presence and absence of a predator (pike Esox lucius; size: 25.4 ± 2.1 cm) and a potential competitor (ruffe Gymnocephalus cernuus; size: 14.1 ± 0.3 cm) fish species. Two P. fluviatilis individuals generally shared the same habitat. In the presence of a conspecific, P. fluviatilis favoured the structurally more-complex, artificial macrophyte habitat over the less-structured rock and sand habitat, which in turn were used equally. In the predator- and competitor treatments, P. fluviatilis seemed to adapt their habitat use to the habitat occupancy of E. lucius and G. cernuus in the Macrophyte vs. Rock and, in the predator treatment, also in the Macrophyte vs. Sand habitat combination, by increasingly occupying a habitat that was used less by the predator or competitor species, respectively. This behaviour suggests that P. fluviatilis tried to avoid the other fish species by choosing a, in some cases less preferred, predator- or competitor-free habitat. This study emphasizes the importance of biological interactions illustrated by the potential of predation risk and competition to structure fish communities by influencing habitat use at small spatial scales.


Subject(s)
Ecosystem , Perches/physiology , Animals , Competitive Behavior , Esocidae/physiology , Predatory Behavior
9.
Ambio ; 49(6): 1194-1210, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31707582

ABSTRACT

The coastal zone of the Baltic Sea is diverse with strong regional differences in the physico-chemical setting. This diversity is also reflected in the importance of different biogeochemical processes altering nutrient and organic matter fluxes on the passage from land to sea. This review investigates the most important processes for removal of nutrients and organic matter, and the factors that regulate the efficiency of the coastal filter. Nitrogen removal through denitrification is high in lagoons receiving large inputs of nitrate and organic matter. Phosphorus burial is high in archipelagos with substantial sedimentation, but the stability of different burial forms varies across the Baltic Sea. Organic matter processes are tightly linked to the nitrogen and phosphorus cycles. Moreover, these processes are strongly modulated depending on composition of vegetation and fauna. Managing coastal ecosystems to improve the effectiveness of the coastal filter can reduce eutrophication in the open Baltic Sea.


Subject(s)
Ecosystem , Eutrophication , Baltic States , Nitrogen , Nutrients , Oceans and Seas , Phosphorus
10.
Glob Chang Biol ; 25(4): 1235-1246, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30570820

ABSTRACT

The rate at which biological diversity is altered on both land and in the sea, makes temporal community development a critical and fundamental part of understanding global change. With advancements in trait-based approaches, the focus on the impact of temporal change has shifted towards its potential effects on the functioning of the ecosystems. Our mechanistic understanding of and ability to predict community change is still impeded by the lack of knowledge in long-term functional dynamics that span several trophic levels. To address this, we assessed species richness and multiple dimensions of functional diversity and dynamics of two interacting key organism groups in the marine food web: fish and zoobenthos. We utilized unique time series-data spanning four decades, from three environmentally distinct coastal areas in the Baltic Sea, and assembled trait information on six traits per organism group covering aspects of feeding, living habit, reproduction and life history. We identified gradual long-term trends, rather than abrupt changes in functional diversity (trait richness, evenness, dispersion) trait turnover, and overall multi-trait community composition. The linkage between fish and zoobenthic functional community change, in terms of correlation in long-term trends, was weak, with timing of changes being area and trophic group specific. Developments of fish and zoobenthos traits, particularly size (increase in small size for both groups) and feeding habits (e.g. increase in generalist feeding for fish and scavenging or predation for zoobenthos), suggest changes in trophic pathways. We summarize our findings by highlighting three key aspects for understanding functional change across trophic groups: (a) decoupling of species from trait richness, (b) decoupling of richness from density and (c) determining of turnover and multi-trait dynamics. We therefore argue for quantifying change in multiple functional measures to help assessments of biodiversity change move beyond taxonomy and single trophic groups.

11.
PeerJ ; 6: e5899, 2018.
Article in English | MEDLINE | ID: mdl-30416889

ABSTRACT

Increasing environmental pressures and human impacts are reshaping community structures and species interactions throughout all trophic levels. The morphological and behavioural characteristics of species communities contain key ecological information on why prey species appear attractive to predators but are rarely applied when exploring predator-prey (PP) relationships. Expanding our knowledge on how changing prey communities can alter the food resource suitability (RS) for predators is vital for understanding PP dynamics in changing ecosystems. Detailed predator diet data are commonly restricted to commercially important species and often not available over long temporal scales. To find out whether structural changes of prey communities impact the food RS for predator communities over space and time, we apply a novel framework to describe and interpret changes in predator diet-suitability based on predation-relevant traits of prey. We use information on described feeding links from the literature to compile the prey spectrum for each predator and subsequently translate the prey-species into a prey-trait spectrum. For each predator, we then calculate a frequency-based prey-trait affinity score and relate it to the available food resource pool, the community weighted means of prey traits, resulting in a prey-suitability measure. We aim to reveal whether a described multi-decadal change in the community structure of zoobenthos had an impact on the food suitability for the benthic-feeding fish in a coastal system of the Baltic Sea. We assess the direction of change in resource quality from the perspective of benthic-feeding fish and describe predator-specific responses to examine which species are likely to profit or be disadvantaged by changes in their prey spectrum. Furthermore, we test the relationship between functional diversity of prey communities and food suitability for predators, and whether predation linkage-structures are affected through prey community-changes. Our results show that changes in zoobenthic communities had a positive effect on the food suitability for most benthic-feeding fish, implying more suitable food resources. Species-specific responses of predators suggest varying plasticity to cope with prey assemblages of different trait compositions. Additionally, the functional diversity of zoobenthos had a positive effect on the food suitability for predator fish. The changing trait compositions of prey influenced the PP linkage-structure, indicating varying specialisation of benthic feeding fish towards available food resources. Our findings suggest that changing morphological characteristics of prey can impact food RS features for its predators. This approach enables long-term evaluation of prey quality characteristics where no detailed diet data is available and allows for cross-system comparison as it is not relying on taxonomic identities per se.

12.
Sci Adv ; 4(5): eaar8195, 2018 05.
Article in English | MEDLINE | ID: mdl-29750199

ABSTRACT

Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use are difficult, because of multiple interacting pressures, uncertain projections, and a lack of test cases for management. We argue that the Baltic Sea can serve as a time machine to study consequences and mitigation of future coastal perturbations, due to its unique combination of an early history of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems. The Baltic Sea also stands out in providing a strong scientific foundation and accessibility to long-term data series that provide a unique opportunity to assess the efficacy of management actions to address the breakdown of ecosystem functions. Trend reversals such as the return of top predators, recovering fish stocks, and reduced input of nutrient and harmful substances could be achieved only by implementing an international, cooperative governance structure transcending its complex multistate policy setting, with integrated management of watershed and sea. The Baltic Sea also demonstrates how rapidly progressing global pressures, particularly warming of Baltic waters and the surrounding catchment area, can offset the efficacy of current management approaches. This situation calls for management that is (i) conservative to provide a buffer against regionally unmanageable global perturbations, (ii) adaptive to react to new management challenges, and, ultimately, (iii) multisectorial and integrative to address conflicts associated with economic trade-offs.


Subject(s)
Ecosystem , Oceans and Seas , Baltic States , Climate Change , Economics , Geography , Marine Biology , Models, Theoretical
13.
Ambio ; 47(3): 265-268, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29273899

Subject(s)
Oceans and Seas
14.
Glob Chang Biol ; 23(6): 2179-2196, 2017 06.
Article in English | MEDLINE | ID: mdl-28132408

ABSTRACT

Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic-pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic-pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world.


Subject(s)
Climate Change , Ecosystem , Fishes , Animals , Food Chain
15.
Proc Biol Sci ; 283(1825): 20152569, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26888032

ABSTRACT

Species composition and habitats are changing at unprecedented rates in the world's oceans, potentially causing entire food webs to shift to structurally and functionally different regimes. Despite the severity of these regime shifts, elucidating the precise nature of their underlying processes has remained difficult. We address this challenge with a new analytic approach to detect and assess the relative strength of different driving processes in food webs. Our study draws on complexity theory, and integrates the network-centric exponential random graph modelling (ERGM) framework developed within the social sciences with community ecology. In contrast to previous research, this approach makes clear assumptions of direction of causality and accommodates a dynamic perspective on the emergence of food webs. We apply our approach to analysing food webs of the Baltic Sea before and after a previously reported regime shift. Our results show that the dominant food web processes have remained largely the same, although we detect changes in their magnitudes. The results indicate that the reported regime shift may not be a system-wide shift, but instead involve a limited number of species. Our study emphasizes the importance of community-wide analysis on marine regime shifts and introduces a novel approach to examine food webs.


Subject(s)
Aquatic Organisms/physiology , Biota , Models, Biological , Food Chain , Oceans and Seas , Population Dynamics
16.
Naturwissenschaften ; 103(1-2): 8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26757930

ABSTRACT

During a recent marine biological expedition to the Northeast Greenland shelf break (latitudes 74-77 °N), we made the first discovery of Atlantic cod (Gadus morhua), beaked redfish (Sebastes mentella) and capelin (Mallotus villosus). Our novel observations shift the distribution range of Atlantic cod >1000 km further north in East Greenland waters. In light of climate change, we discuss physical forcing and putative connections between the faunas of the Northeast Greenland shelf and the Barents Sea. We emphasise the importance of using real data in spread scenarios for understudied Arctic seas.


Subject(s)
Animal Distribution , Biodiversity , Fishes/physiology , Models, Biological , Animals , Arctic Regions , Atlantic Ocean , Climate Change , Gadus morhua/physiology
18.
Ambio ; 43(1): 26-36, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24414802

ABSTRACT

Hypoxia has occurred intermittently over the Holocene in the Baltic Sea, but the recent expansion from less than 10 000 km(2) before 1950 to >60 000 km(2) since 2000 is mainly caused by enhanced nutrient inputs from land and atmosphere. With worsening hypoxia, the role of sediments changes from nitrogen removal to nitrogen release as ammonium. At present, denitrification in the water column and sediments is equally important. Phosphorus is currently buried in sediments mainly in organic form, with an additional contribution of reduced Fe-phosphate minerals in the deep anoxic basins. Upon the transition to oxic conditions, a significant proportion of the organic phosphorus will be remineralized, with the phosphorus then being bound to iron oxides. This iron-oxide bound phosphorus is readily released to the water column upon the onset of hypoxia again. Important ecosystems services carried out by the benthic fauna, including biogeochemical feedback-loops and biomass production, are also lost with hypoxia. The results provide quantitative knowledge of nutrient release and recycling processes under various environmental conditions in support of decision support tools underlying the Baltic Sea Action Plan.


Subject(s)
Ecosystem , Eutrophication , Oxygen/analysis , Seawater/analysis , Baltic States , Biomass , Geologic Sediments , Nitrogen/analysis , Oceans and Seas , Phosphorus/analysis
19.
PLoS One ; 8(10): e78910, 2013.
Article in English | MEDLINE | ID: mdl-24167635

ABSTRACT

Due to human impact, there is extensive degradation and loss of marine habitats, which calls for measures that incorporate taxonomic as well as functional and trophic aspects of biodiversity. Since such data is less easily quantifiable in nature, the use of habitats as surrogates or proxies for biodiversity is on the rise in marine conservation and management. However, there is a critical gap in knowledge of whether pre-defined habitat units adequately represent the functional and trophic structure of communities. We also lack comparisons of different measures of community structure in terms of both between- (ß) and within-habitat (α) variability when accounting for species densities. Thus, we evaluated a priori defined coastal habitats as surrogates for traditional taxonomic, functional and trophic zoobenthic community structure. We focused on four habitats (bare sand, canopy-forming algae, seagrass above- and belowground), all easily delineated in nature and defined through classification systems. We analyzed uni- and multivariate data on species and trait diversity as well as stable isotope ratios of benthic macrofauna. A good fit between habitat types and taxonomic and functional structure was found, although habitats were more similar functionally. This was attributed to within-habitat heterogeneity so when habitat divisions matched the taxonomic structure, only bare sand was functionally distinct. The pre-defined habitats did not meet the variability of trophic structure, which also proved to differentiate on a smaller spatial scale. The quantification of trophic structure using species density only identified an epi- and an infaunal unit. To summarize the results we present a conceptual model illustrating the match between pre-defined habitat types and the taxonomic, functional and trophic community structure. Our results show the importance of including functional and trophic aspects more comprehensively in marine management and spatial planning.


Subject(s)
Aquatic Organisms/physiology , Biodiversity , Ecosystem , Food Chain , Animals , Aquatic Organisms/classification , Humans
20.
Ecol Appl ; 22(8): 2221-36, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23387121

ABSTRACT

Studies focusing on the linkage between numerical and functional trait diversity frequently consider functional diversity indices but rarely evaluate them empirically or evaluate the use of other than continuous traits such as body size. Here, we present an extensive compilation on functional knowledge of benthic macrofauna using the categorical trait approach and scores of both common and rare species for 25 biological traits, including 102 modalities. We empirically quantify functional trait richness, within-trait species richness (redundancy), and trait variability on a large regional scale (> 1000 km), in three environmentally different areas (basins of a sea), over a long time-span (10 years). To develop further the usage of multiple categorical traits as an analysis tool, we examine the effect of sampling effort for the understanding of the functional properties of the benthic meta-assemblages. We also evaluate the relationship between species richness and trait richness in order to understand co-variation between trait modalities and how traits are packaged within species. Results show that the biological diversity in terms of traits could be distinguished between areas of higher and lower salinity, higher and lower anthropogenic stress, and higher and lower species richness. A considerably lower number of samples are needed to portray the functional structure of an area in relation to the taxonomic structure, thereby demonstrating the advantage of using traits when considering management and conservation issues. Using categorical traits empirically requires, as shown within this study, an understanding of the relationship between species richness and expression of traits, covariation of traits at different species richness and composition levels, acknowledgment of differences in trait expressions between common and rare species, and variability in abundance of species. Empirical trait-based analysis can reveal large-scale differences and insights into complexities between assemblage structure and function, and simultaneously be a valid tool for finding generalities.


Subject(s)
Biodiversity , Animals , Environmental Monitoring , Models, Biological , Oceans and Seas , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...