Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 25(1): 442, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702658

ABSTRACT

Genes containing the SET domain can catalyse histone lysine methylation, which in turn has the potential to cause changes to chromatin structure and regulation of the transcription of genes involved in diverse physiological and developmental processes. However, the functions of SET domain-containing (StSET) genes in potato still need to be studied. The objectives of our study can be summarized as in silico analysis to (i) identify StSET genes in the potato genome, (ii) systematically analyse gene structure, chromosomal distribution, gene duplication events, promoter sequences, and protein domains, (iii) perform phylogenetic analyses, (iv) compare the SET domain-containing genes of potato with other plant species with respect to protein domains and orthologous relationships, (v) analyse tissue-specific expression, and (vi) study the expression of StSET genes in response to drought and heat stresses. In this study, we identified 57 StSET genes in the potato genome, and the genes were physically mapped onto eleven chromosomes. The phylogenetic analysis grouped these StSET genes into six clades. We found that tandem duplication through sub-functionalisation has contributed only marginally to the expansion of the StSET gene family. The protein domain TDBD (PFAM ID: PF16135) was detected in StSET genes of potato while it was absent in all other previously studied species. This study described three pollen-specific StSET genes in the potato genome. Expression analysis of four StSET genes under heat and drought in three potato clones revealed that these genes might have non-overlapping roles under different abiotic stress conditions and durations. The present study provides a comprehensive analysis of StSET genes in potatoes, and it serves as a basis for further functional characterisation of StSET genes towards understanding their underpinning biological mechanisms in conferring stress tolerance.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Phylogeny , Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Chromosomes, Plant/genetics , Stress, Physiological/genetics , Gene Duplication , PR-SET Domains/genetics , Chromosome Mapping , Gene Expression Profiling , Droughts
2.
Plant Cell Rep ; 43(5): 117, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622429

ABSTRACT

KEY MESSAGE: We constructed a gene expression atlas and co-expression network for potatoes and identified several novel genes associated with various agronomic traits. This resource will accelerate potato genetics and genomics research. Potato (Solanum tuberosum L.) is the world's most crucial non-cereal food crop and ranks third in food production after wheat and rice. Despite the availability of several potato transcriptome datasets at public databases like NCBI SRA, an effort has yet to be put into developing a global transcriptome atlas and a co-expression network for potatoes. The objectives of our study were to construct a global expression atlas for potatoes using publicly available transcriptome datasets, identify housekeeping and tissue-specific genes, construct a global co-expression network and identify co-expression clusters, investigate the transcriptional complexity of genes involved in various essential biological processes related to agronomic traits, and provide a web server (StCoExpNet) to easily access the newly constructed expression atlas and co-expression network to investigate the expression and co-expression of genes of interest. In this study, we used data from 2299 publicly available potato transcriptome samples obtained from 15 different tissues to construct a global transcriptome atlas. We found that roughly 87% of the annotated genes exhibited detectable expression in at least one sample. Among these, we identified 281 genes with consistent and stable expression levels, indicating their role as housekeeping genes. Conversely, 308 genes exhibited marked tissue-specific expression patterns. We exemplarily linked some co-expression clusters to important agronomic traits of potatoes, such as self-incompatibility, anthocyanin biosynthesis, tuberization, and defense responses against multiple pathogens. The dataset compiled here constitutes a new resource (StCoExpNet), which can be accessed at https://stcoexpnet.julius-kuehn.de . This transcriptome atlas and the co-expression network will accelerate potato genetics and genomics research.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Phenotype , Transcriptome/genetics , Genomics
3.
Plant Cell Environ ; 46(11): 3611-3627, 2023 11.
Article in English | MEDLINE | ID: mdl-37431820

ABSTRACT

Research on C4 and C3-C4 photosynthesis has attracted significant attention because the understanding of the genetic underpinnings of these traits will support the introduction of its characteristics into commercially relevant crop species. We used a panel of 19 taxa of 18 Brassiceae species with different photosynthesis characteristics (C3 and C3-C4) with the following objectives: (i) create draft genome assemblies and annotations, (ii) quantify orthology levels using synteny maps between all pairs of taxa, (iii) ⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠describe the phylogenetic relatedness across all the species, and (iv) track the evolution of C3-C4 intermediate photosynthesis in the Brassiceae tribe. Our results indicate that the draft de novo genome assemblies are of high quality and cover at least 90% of the gene space. Therewith we more than doubled the sampling depth of genomes of the Brassiceae tribe that comprises commercially important as well as biologically interesting species. The gene annotation generated high-quality gene models, and for most genes extensive upstream sequences are available for all taxa, yielding potential to explore variants in regulatory sequences. The genome-based phylogenetic tree of the Brassiceae contained two main clades and indicated that the C3-C4 intermediate photosynthesis has evolved five times independently. Furthermore, our study provides the first genomic support of the hypothesis that Diplotaxis muralis is a natural hybrid of D. tenuifolia and D. viminea. Altogether, the de novo genome assemblies and the annotations reported in this study are a valuable resource for research on the evolution of C3-C4 intermediate photosynthesis.


Subject(s)
Brassicaceae , Photosynthesis , Phylogeny , Photosynthesis/genetics , Brassicaceae/genetics , Genomics
4.
Front Plant Sci ; 13: 875202, 2022.
Article in English | MEDLINE | ID: mdl-35645998

ABSTRACT

Potato (Solanum tuberosum L.) is the most important non-grain food crop. Tandem duplication significantly contributes to genome evolution. The objectives of this study were to (i) identify tandemly duplicated genes and compare their genomic distributions across potato genotypes, (ii) investigate the bias in functional specificities, (iii) explore the relationships among coding sequence, promoter and expression divergences associated with tandemly duplicated genes, (iv) examine the role of tandem duplication in generating and expanding lineage-specific gene families, (v) investigate the evolutionary forces affecting tandemly duplicated genes, and (vi) assess the similarities and differences with respect to above mentioned aspects between cultivated genotypes and their wild-relative. In this study, we used well-annotated and chromosome-scale de novo genome assemblies of multiple potato genotypes. Our results showed that tandemly duplicated genes are abundant and dispersed through the genome. We found that several functional specificities, such as disease resistance, stress-tolerance, and biosynthetic pathways of tandemly duplicated genes were differentially enriched across multiple potato genomes. Our results indicated the existence of a significant correlation among expression, promoter, and protein divergences in tandemly duplicated genes. We found about one fourth of tandemly duplicated gene clusters as lineage-specific among multiple potato genomes, and these tended to localize toward centromeres and revealed distinct selection signatures and expression patterns. Furthermore, our results showed that a majority of duplicated genes were retained through sub-functionalization followed by genetic redundancy, while only a small fraction of duplicated genes was retained though neo-functionalization. The lineage-specific expansion of gene families by tandem duplication coupled with functional bias might have significantly contributed to potato's genotypic diversity, and, thus, to adaption to environmental stimuli.

5.
Nature ; 588(7837): 284-289, 2020 12.
Article in English | MEDLINE | ID: mdl-33239781

ABSTRACT

Genetic diversity is key to crop improvement. Owing to pervasive genomic structural variation, a single reference genome assembly cannot capture the full complement of sequence diversity of a crop species (known as the 'pan-genome'1). Multiple high-quality sequence assemblies are an indispensable component of a pan-genome infrastructure. Barley (Hordeum vulgare L.) is an important cereal crop with a long history of cultivation that is adapted to a wide range of agro-climatic conditions2. Here we report the construction of chromosome-scale sequence assemblies for the genotypes of 20 varieties of barley-comprising landraces, cultivars and a wild barley-that were selected as representatives of global barley diversity. We catalogued genomic presence/absence variants and explored the use of structural variants for quantitative genetic analysis through whole-genome shotgun sequencing of 300 gene bank accessions. We discovered abundant large inversion polymorphisms and analysed in detail two inversions that are frequently found in current elite barley germplasm; one is probably the product of mutation breeding and the other is tightly linked to a locus that is involved in the expansion of geographical range. This first-generation barley pan-genome makes previously hidden genetic variation accessible to genetic studies and breeding.


Subject(s)
Chromosomes, Plant/genetics , Genome, Plant/genetics , Hordeum/genetics , Internationality , Mutation , Plant Breeding , Chromosome Inversion/genetics , Chromosome Mapping , Genetic Loci/genetics , Genotype , Hordeum/classification , Polymorphism, Genetic/genetics , Reference Standards , Seed Bank , Sequence Inversion , Whole Genome Sequencing
6.
PLoS One ; 11(2): e0148771, 2016.
Article in English | MEDLINE | ID: mdl-26859686

ABSTRACT

Bambara groundnut (Vigna subterranea (L.) Verdc.) is an African legume and is a promising underutilized crop with good seed nutritional values. Low temperature stress in a number of African countries at night, such as Botswana, can effect the growth and development of bambara groundnut, leading to losses in potential crop yield. Therefore, in this study we developed a computational pipeline to identify and analyze the genes and gene modules associated with low temperature stress responses in bambara groundnut using the cross-species microarray technique (as bambara groundnut has no microarray chip) coupled with network-based analysis. Analyses of the bambara groundnut transcriptome using cross-species gene expression data resulted in the identification of 375 and 659 differentially expressed genes (p<0.01) under the sub-optimal (23°C) and very sub-optimal (18°C) temperatures, respectively, of which 110 genes are commonly shared between the two stress conditions. The construction of a Highest Reciprocal Rank-based gene co-expression network, followed by its partition using a Heuristic Cluster Chiseling Algorithm resulted in 6 and 7 gene modules in sub-optimal and very sub-optimal temperature stresses being identified, respectively. Modules of sub-optimal temperature stress are principally enriched with carbohydrate and lipid metabolic processes, while most of the modules of very sub-optimal temperature stress are significantly enriched with responses to stimuli and various metabolic processes. Several transcription factors (from MYB, NAC, WRKY, WHIRLY & GATA classes) that may regulate the downstream genes involved in response to stimulus in order for the plant to withstand very sub-optimal temperature stress were highlighted. The identified gene modules could be useful in breeding for low-temperature stress tolerant bambara groundnut varieties.


Subject(s)
Fabaceae/growth & development , Fabaceae/genetics , Genes, Plant , Carbohydrate Metabolism/genetics , Cold Temperature/adverse effects , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Fabaceae/metabolism , Gene Expression , Gene Expression Profiling , Gene Ontology , Gene Regulatory Networks , Lipid Metabolism/genetics , Plant Breeding , Plant Proteins/genetics , Stress, Physiological , Transcription Factors/genetics
7.
PLoS One ; 10(4): e0123236, 2015.
Article in English | MEDLINE | ID: mdl-25849294

ABSTRACT

14-3-3 proteins are a large multigenic family of regulatory proteins ubiquitously found in eukaryotes. In plants, 14-3-3 proteins are reported to play significant role in both development and response to stress stimuli. Therefore, considering their importance, genome-wide analyses have been performed in many plants including Arabidopsis, rice and soybean. But, till date, no comprehensive investigation has been conducted in any C4 panicoid crops. In view of this, the present study was performed to identify 8, 5 and 26 potential 14-3-3 gene family members in foxtail millet (Si14-3-3), sorghum (Sb14-3-3) and maize (Zm14-3-3), respectively. In silico characterization revealed large variations in their gene structures; segmental and tandem duplications have played a major role in expansion of these genes in foxtail millet and maize. Gene ontology annotation showed the participation of 14-3-3 proteins in diverse biological processes and molecular functions, and in silico expression profiling indicated their higher expression in all the investigated tissues. Comparative mapping was performed to derive the orthologous relationships between 14-3-3 genes of foxtail millet and other Poaceae members, which showed a higher, as well as similar percentage of orthology among these crops. Expression profiling of Si14-3-3 genes during different time-points of abiotic stress and hormonal treatments showed a differential expression pattern of these genes, and sub-cellular localization studies revealed the site of action of Si14-3-3 proteins within the cells. Further downstream characterization indicated the interaction of Si14-3-3 with a nucleocytoplasmic shuttling phosphoprotein (SiRSZ21A) in a phosphorylation-dependent manner, and this demonstrates that Si14-3-3 might regulate the splicing events by binding with phosphorylated SiRSZ21A. Taken together, the present study is a comprehensive analysis of 14-3-3 gene family members in foxtail millet, sorghum and maize, which provides interesting information on their gene structure, protein domains, phylogenetic and evolutionary relationships, and expression patterns during abiotic stresses and hormonal treatments, which could be useful in choosing candidate members for further functional characterization. In addition, demonstration of interaction between Si14-3-3 and SiRSZ21A provides novel clues on the involvement of 14-3-3 proteins in the splicing events.


Subject(s)
14-3-3 Proteins/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , RNA Splicing/genetics , Ribonucleoproteins/metabolism , Setaria Plant/metabolism , 14-3-3 Proteins/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Gene Expression Profiling , Gene Ontology , Genome, Plant , Genome-Wide Association Study , Molecular Sequence Annotation , Oryza/genetics , Phosphorylation/genetics , Phylogeny , Plant Proteins/genetics , RNA-Binding Proteins , Ribonucleoproteins/genetics , Ribonucleoproteins, Small Nuclear , Setaria Plant/genetics , Setaria Plant/growth & development , Sorghum/genetics , Subcellular Fractions , Zea mays/genetics
8.
DNA Res ; 22(1): 79-90, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25428892

ABSTRACT

Transposable elements (TEs) are major components of plant genome and are reported to play significant roles in functional genome diversity and phenotypic variations. Several TEs are highly polymorphic for insert location in the genome and this facilitates development of TE-based markers for various genotyping purposes. Considering this, a genome-wide analysis was performed in the model plant foxtail millet. A total of 30,706 TEs were identified and classified as DNA transposons (24,386), full-length Copia type (1,038), partial or solo Copia type (10,118), full-length Gypsy type (1,570), partial or solo Gypsy type (23,293) and Long- and Short-Interspersed Nuclear Elements (3,659 and 53, respectively). Further, 20,278 TE-based markers were developed, namely Retrotransposon-Based Insertion Polymorphisms (4,801, ∼24%), Inter-Retrotransposon Amplified Polymorphisms (3,239, ∼16%), Repeat Junction Markers (4,451, ∼22%), Repeat Junction-Junction Markers (329, ∼2%), Insertion-Site-Based Polymorphisms (7,401, ∼36%) and Retrotransposon-Microsatellite Amplified Polymorphisms (57, 0.2%). A total of 134 Repeat Junction Markers were screened in 96 accessions of Setaria italica and 3 wild Setaria accessions of which 30 showed polymorphism. Moreover, an open access database for these developed resources was constructed (Foxtail millet Transposable Elements-based Marker Database; http://59.163.192.83/ltrdb/index.html). Taken together, this study would serve as a valuable resource for large-scale genotyping applications in foxtail millet and related grass species.


Subject(s)
DNA Transposable Elements , Databases, Nucleic Acid , Genome-Wide Association Study , Polymorphism, Genetic , Retroelements , Setaria Plant/genetics , Genetic Markers
9.
PLoS One ; 9(11): e113092, 2014.
Article in English | MEDLINE | ID: mdl-25409524

ABSTRACT

The APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is one of the largest transcription factor (TF) families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and RAV (Related to ABI3/VP). AP2/ERFs are known to play significant roles in various plant processes including growth and development and biotic and abiotic stress responses. Considering this, a comprehensive genome-wide study was conducted in foxtail millet (Setaria italica L.). A total of 171 AP2/ERF genes were identified by systematic sequence analysis and were physically mapped onto nine chromosomes. Phylogenetic analysis grouped AP2/ERF genes into six classes (I to VI). Duplication analysis revealed that 12 (∼7%) SiAP2/ERF genes were tandem repeated and 22 (∼13%) were segmentally duplicated. Comparative physical mapping between foxtail millet AP2/ERF genes and its orthologs of sorghum (18 genes), maize (14 genes), rice (9 genes) and Brachypodium (6 genes) showed the evolutionary insights of AP2/ERF gene family and also the decrease in orthology with increase in phylogenetic distance. The evolutionary significance in terms of gene-duplication and divergence was analyzed by estimating synonymous and non-synonymous substitution rates. Expression profiling of candidate AP2/ERF genes against drought, salt and phytohormones revealed insights into their precise and/or overlapping expression patterns which could be responsible for their functional divergence in foxtail millet. The study showed that the genes SiAP2/ERF-069, SiAP2/ERF-103 and SiAP2/ERF-120 may be considered as potential candidate genes for further functional validation as well for utilization in crop improvement programs for stress resistance since these genes were up-regulated under drought and salinity stresses in ABA dependent manner. Altogether the present study provides new insights into evolution, divergence and systematic functional analysis of AP2/ERF gene family at genome level in foxtail millet which may be utilized for improving stress adaptation and tolerance in millets, cereals and bioenergy grasses.


Subject(s)
Gene Expression Profiling/methods , Plant Proteins/genetics , Setaria Plant/metabolism , Transcription Factors/genetics , Adaptation, Physiological , Chromosome Mapping , Chromosomes, Plant , Evolution, Molecular , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins/metabolism , Sequence Analysis, DNA , Setaria Plant/genetics , Transcription Factors/metabolism
10.
PLoS One ; 9(10): e109920, 2014.
Article in English | MEDLINE | ID: mdl-25279462

ABSTRACT

MYB proteins represent one of the largest transcription factor families in plants, playing important roles in diverse developmental and stress-responsive processes. Considering its significance, several genome-wide analyses have been conducted in almost all land plants except foxtail millet. Foxtail millet (Setaria italica L.) is a model crop for investigating systems biology of millets and bioenergy grasses. Further, the crop is also known for its potential abiotic stress-tolerance. In this context, a comprehensive genome-wide survey was conducted and 209 MYB protein-encoding genes were identified in foxtail millet. All 209 S. italica MYB (SiMYB) genes were physically mapped onto nine chromosomes of foxtail millet. Gene duplication study showed that segmental- and tandem-duplication have occurred in genome resulting in expansion of this gene family. The protein domain investigation classified SiMYB proteins into three classes according to number of MYB repeats present. The phylogenetic analysis categorized SiMYBs into ten groups (I-X). SiMYB-based comparative mapping revealed a maximum orthology between foxtail millet and sorghum, followed by maize, rice and Brachypodium. Heat map analysis showed tissue-specific expression pattern of predominant SiMYB genes. Expression profiling of candidate MYB genes against abiotic stresses and hormone treatments using qRT-PCR revealed specific and/or overlapping expression patterns of SiMYBs. Taken together, the present study provides a foundation for evolutionary and functional characterization of MYB TFs in foxtail millet to dissect their functions in response to environmental stimuli.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Plant Proteins/genetics , Proto-Oncogene Proteins c-myb/genetics , Setaria Plant/genetics , Transcription Factors/genetics , Chromosome Mapping , Chromosomes, Plant , Evolution, Molecular , Gene Expression Profiling , Gene Ontology , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-myb/chemistry , Proto-Oncogene Proteins c-myb/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Setaria Plant/growth & development , Setaria Plant/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism
11.
Mol Biol Rep ; 41(10): 6343-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25005261

ABSTRACT

Foxtail millet has recently been regarded as a model crop for studying the systems biology of millets and bioenergy grass species. For expediting the functional genomic studies in this model crop as well as in the related millets and bioenergy grasses, we have developed a comprehensive transcription factor database. Our foxtail millet transcription factors database (FmTFDb: http://59.163.192.91/FmTFDb/index.html ) encompasses 2,297 putative TFs in 55 families along with its sequence features, chromosomal locations, tissue-specific gene expression data, gene ontology (GO) assignment, and phylogeny. FmTFDb is intended to provide the users an unrestricted public access in retrieving and visualizing the individual members of a TF family through a set of query interfaces and analysis tools, including the BLAST search, annotation query interfaces, and tools to identify enriched GO terms and to visualize physical maps. This FmTFDb will serve as a promising central resource for researchers as well as breeders who are dedicated towards crop improvement of millets and bioenergy grasses.


Subject(s)
Databases, Genetic , Genomics , Setaria Plant , Transcription Factors , Chromosome Mapping , Chromosomes, Plant , Genomics/methods , Internet , Setaria Plant/genetics , Setaria Plant/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , User-Computer Interface
12.
Funct Integr Genomics ; 14(3): 531-43, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24915771

ABSTRACT

C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.


Subject(s)
Plant Proteins/genetics , Setaria Plant/genetics , Transcription Factors/genetics , Amino Acid Sequence , Consensus Sequence , Gene Duplication , Gene Expression , Gene Ontology , Genes, Plant , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Promoter Regions, Genetic , Setaria Plant/metabolism , Stress, Physiological , Synteny , Transcription Factors/chemistry , Transcription Factors/metabolism , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...