Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Type of study
Language
Publication year range
1.
Dalton Trans ; 51(23): 9138-9143, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35642932

ABSTRACT

Persistent luminescent materials are present in several recent studies on new applications and novel properties. In this work, we demonstrate, for the first time, the production of translucent flexible persistent composites based on Sr2MgSi2O7:Eu2+,Dy3+ (SMSO) into cellulose ether matrix film. The composite was successfully prepared through a new optimized route of co-precipitation and microwave-assisted annealing followed by (3-aminopropyl)triethoxysilane (APTES) coating and dispersion in hydroxypropyl methylcellulose (HPMC). The SMSO@APTES/HPMC films show persistent luminescence emission at 475 nm (blue) and high transmittance in the visible range. To understand the fine distribution of the nanoparticles in the matrix, we have investigated their structure and dispersion by using Synchrotron Radiation X-ray fluorescence mapping and Scanning Transmission X-ray Microscopy. This innovative composite could bring new perspectives for the class of persistent luminescence materials, enhancing technologies in progress throwing light on new applications never perceived.


Subject(s)
Luminescence , Nanoparticles , Cellulose/chemistry , Ether , Nanoparticles/chemistry
2.
Radiat Phys Chem, v. 198, 110238, set. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4389

ABSTRACT

Nanogels are internally crosslinked particles of nanometric size used in various fields e.g. as such as carriers in drug delivery systems. They can be produced using ionizing radiation in dilute aqueous solutions. This method is carried out in a pure polymer-solvent system, avoiding the addition of any additives such as monomers, surfactants, catalysts and crosslinking agents and no further purification step is necessary. Poly(N-vinyl pyrrolidone) (PVP K-90) nanogels were prepared by gamma irradiation in an aqueous solution. The samples were prepared in triplicate in multipurpose cobalt-60 gamma irradiator using 1, 10, 25 and 100 mM PVP solutions. Samples were irradiated in argon and nitrous oxide conditions with doses from 1 kGy up to 25 kGy with 10 kGy/h dose rate. The mean particle size (Rh) was determined by Dynamic Light Scattering (DLS) and radius of gyration (Rg) and weight-average molecular weight (Mw) by Static Light Scattering (SLS). These samples were morphologically characterized using Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). Samples prepared with 100 mM PVP K-90 solution formed macroscopic gels, in the samples obtained with 25 mM PVP K-90 solution there was a prevalence of intermolecular crosslinking. On the other hand, in the samples generated with 10 mM PVP K-90 solution, there was a predominance of intramolecular crosslinking demonstrated in the tendency to: decrease in the radius of gyration (Rg), in the constancy of the weight-average molecular weight (Mw), in the increase in polymer coil density (ρcoil), in the Rg/Rh ratio (shape factor) around 1.0 indicating homogenous, internally cross-linked spheres, in the high relief spherical structures observed in the AFM images and in the spherical particles with high contrast observed in the TEM images. The saturation of the samples with nitrous oxide doubled formation of hydroxyl radicals, favoring the generation of polymeric radicals. Higher average number of radicals in each macromolecule contributed to the higher number of intramolecular crosslinks.

3.
Nanotechnology ; 32(40)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34167106

ABSTRACT

Resistive switching (RS) devices are promising forms of non-volatile memory. However, one of the biggest challenges for RS memory applications is the device-to-device (D2D) variability, which is related to the intrinsic stochastic formation and configuration of oxygen vacancy (VO) conductive filaments (CFs). In order to reduce the D2D variability, control over the formation and configuration of oxygen vacancies is paramount. In this study, we report on the Zr doping of TaOx-based RS devices prepared by pulsed-laser deposition as an efficient means of reducing the VOformation energy and increasing the confinement of CFs, thus reducing D2D variability. Our findings were supported by XPS, spectroscopic ellipsometry and electronic transport analysis. Zr-doped films showed increased VOconcentration and more localized VOs, due to the interaction with Zr. DC and pulse mode electrical characterization showed that the D2D variability was decreased by a factor of seven, the resistance window was doubled, and a more gradual and monotonic long-term potentiation/depression in pulse switching was achieved in forming-free Zr:TaOxdevices, thus displaying promising performance for artificial synapse applications.

4.
Nature ; 565(7737): 35-42, 2019 01.
Article in English | MEDLINE | ID: mdl-30510160

ABSTRACT

Since the early 1980s, most electronics have relied on the use of complementary metal-oxide-semiconductor (CMOS) transistors. However, the principles of CMOS operation, involving a switchable semiconductor conductance controlled by an insulating gate, have remained largely unchanged, even as transistors are miniaturized to sizes of 10 nanometres. We investigated what dimensionally scalable logic technology beyond CMOS could provide improvements in efficiency and performance for von Neumann architectures and enable growth in emerging computing such as artifical intelligence. Such a computing technology needs to allow progressive miniaturization, reduce switching energy, improve device interconnection and provide a complete logic and memory family. Here we propose a scalable spintronic logic device that operates via spin-orbit transduction (the coupling of an electron's angular momentum with its linear momentum) combined with magnetoelectric switching. The device uses advanced quantum materials, especially correlated oxides and topological states of matter, for collective switching and detection. We describe progress in magnetoelectric switching and spin-orbit detection of state, and show that in comparison with CMOS technology our device has superior switching energy (by a factor of 10 to 30), lower switching voltage (by a factor of 5) and enhanced logic density (by a factor of 5). In addition, its non-volatility enables ultralow standby power, which is critical to modern computing. The properties of our device indicate that the proposed technology could enable the development of multi-generational computing.

SELECTION OF CITATIONS
SEARCH DETAIL
...