Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37446445

ABSTRACT

Today, sustainability represents the key factor for economic progress in compliance with social advancement and environmental protection, driving innovation in materials, processes and technologies [...].

2.
Polymers (Basel) ; 16(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38201789

ABSTRACT

The current era has been defined as "The Plastic Era", considering that over the past 50 years the role and importance of polymeric materials in our economy has steadily grown, reaching a production of around a few hundred million tons per year which may even double in the next 20 years [...].

3.
Materials (Basel) ; 15(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36363366

ABSTRACT

The direct hydrogenation of CO2 into dimethyl-ether (DME) has been studied in the presence of ferrierite-based CuZnZr hybrid catalysts. The samples were synthetized with three different techniques and two oxides/zeolite mass ratios. All the samples (calcined and spent) were properly characterized with different physico-chemical techniques for determining the textural and morphological nature of the catalytic surface. The experimental campaign was carried out in a fixed bed reactor at 2.5 MPa and stoichiometric H2/CO2 molar ratio, by varying both the reaction temperature (200-300 °C) and the spatial velocity (6.7-20.0 NL∙gcat-1∙h-1). Activity tests evidenced a superior activity of catalysts at a higher oxides/zeolite weight ratio, with a maximum DME yield as high as 4.5% (58.9 mgDME∙gcat-1∙h-1) exhibited by the sample prepared by gel-oxalate coprecipitation. At lower oxide/zeolite mass ratios, the catalysts prepared by impregnation and coprecipitation exhibited comparable DME productivity, whereas the physically mixed sample showed a high activity in CO2 hydrogenation but a low selectivity toward methanol and DME, ascribed to a minor synergy between the metal-oxide sites and the acid sites of the zeolite. Durability tests highlighted a progressive loss in activity with time on stream, mainly associated to the detrimental modifications under the adopted experimental conditions.

4.
Materials (Basel) ; 14(4)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671227

ABSTRACT

The influence of the semiconductor microstructure on the photocatalytic behavior of Pt-PtOx/TiO2 catalysts was studied by comparing the methanol-reforming performance of systems based on commercial P25 or TiO2 from sol-gel synthesis calcined at different temperatures. The Pt co-catalyst was deposited by incipient wetness and formed either by calcination or high-temperature H2 treatment. Structural features of the photocatalysts were established by X-ray powder diffraction (XRD), electron spin resonance (ESR), X-ray photoelectron spectroscopy (XPS), optical absorption, Raman spectroscopy and TEM measurements. In situ reduction of Pt during the photocatalytic reaction was generally observed. The P25-based samples showed the best H2 production, while the activity of all sol-gel-based samples was similar in spite of the varying microstructures resulting from the different preparation conditions. Accordingly, the sol-gel-based TiO2 has a fundamental structural feature interfering with its photocatalytic performance, which could not be improved by annealing in the 400-500 °C range even by scarifying specific surface area at higher temperatures.

5.
Materials (Basel) ; 11(11)2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30441800

ABSTRACT

CO2 hydrogenation to dimethyl ether (DME) is a promising strategy to drive the current chemical industry towards a low-carbon scenario since DME can be used as an eco-friendly fuel as well as a platform molecule for chemical production. A Cu‒ZnO‒ZrO2/ferrierite (CZZ/FER) hybrid grain was recently proposed as a catalyst for CO2-to-DME one-pot conversion exhibiting high DME productivity thanks to the unique shape-selectivity offered by ferrierite zeolite. Nevertheless, such a catalyst deactivates but no direct evidence has been reported of activity loss over time. In this work, CZZ/FER catalysts with different acidity levels were characterized with the FTIR technique before and after reactions, aiming to give new insights about catalyst deactivation. Results show that activity loss can be related to both (i) copper particle sintering, which decreases CO2 activation towards methanol, and (ii) acidity loss due to H⁺/Cu2+ ion exchange.

6.
Materials (Basel) ; 11(10)2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30308991

ABSTRACT

In this study, relationships between preparation conditions, structure, and activity of Pt-containing TiO2 photocatalysts in photoinduced reforming of glycerol for H2 production were explored. Commercial Aerolyst® TiO2 (P25) and homemade TiO2 prepared by precipitation-aging method were used as semiconductors. Pt co-catalysts were prepared by incipient wetness impregnation from aqueous solution of Pt(NH3)4(NO3)2 and activated by calcination, high temperature hydrogen, or nitrogen treatments. The chemico-physical and structural properties were evaluated by XRD, ¹H MAS NMR, ESR, XPS, TG-MS and TEM. The highest H2 evolution rate was observed over P25 based samples and the H2 treatment resulted in more active samples than the other co-catalyst formation methods. In all calcined samples, reduction of Pt occurred during the photocatalytic reaction. Platinum was more easily reducible in all of the P25 supported samples compared to those obtained from the more water-retentive homemade TiO2. This result was related to the negative effect of the adsorbed water content of the homemade TiO2 on Pt reduction and on particle growth during co-catalyst formation.

7.
Molecules ; 23(1)2017 Dec 24.
Article in English | MEDLINE | ID: mdl-29295541

ABSTRACT

This review reports recent achievements in dimethyl ether (DME) synthesis via CO2 hydrogenation. This gas-phase process could be considered as a promising alternative for carbon dioxide recycling toward a (bio)fuel as DME. In this view, the production of DME from catalytic hydrogenation of CO2 appears as a technology able to face also the ever-increasing demand for alternative, environmentally-friendly fuels and energy carriers. Basic considerations on thermodynamic aspects controlling DME production from CO2 are presented along with a survey of the most innovative catalytic systems developed in this field. During the last years, special attention has been paid to the role of zeolite-based catalysts, either in the methanol-to-DME dehydration step or in the one-pot CO2-to-DME hydrogenation. Overall, the productivity of DME was shown to be dependent on several catalyst features, related not only to the metal-oxide phase-responsible for CO2 activation/hydrogenation-but also to specific properties of the zeolites (i.e., topology, porosity, specific surface area, acidity, interaction with active metals, distributions of metal particles, …) influencing activity and stability of hybridized bifunctional heterogeneous catalysts. All these aspects are discussed in details, summarizing recent achievements in this research field.


Subject(s)
Carbon Dioxide/chemistry , Methyl Ethers/chemistry , Catalysis , Hydrogenation , Pressure , Thermodynamics
8.
Environ Sci Technol ; 48(10): 6019-26, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24798456

ABSTRACT

In this work, a novel approach to obtain high yield to poly-tert-butylglycerolethers by glycerol etherification reaction with tert-butyl alcohol (TBA) is proposed. The limit of this reaction is the production of poly-ethers, which inhibits the formation of poly-ethers potentially usable in the blend with conventional diesel for transportation. The results herein reported demonstrate that the use of a water permselective membrane offers the possibility to shift the equilibrium toward the formation of poly-ethers since the water formed during reaction is continuously and selectively removed from the reaction medium by the recirculation of the gas phase. Using a proper catalyst and optimizing the reaction conditions, in a single experiment, a total glycerol conversion can be reached with a yield to poly-ethers close to 70%, which represents data never before reached using TBA as reactant. The approach here proposed could open up new opportunities for all catalytic reactions affected by water formation.


Subject(s)
Ethers/chemistry , Glycerol/chemistry , Membranes, Artificial , tert-Butyl Alcohol/chemistry , Catalysis , Ceramics/chemistry , Molecular Weight
9.
Bioresour Technol ; 118: 350-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22705542

ABSTRACT

Etherification of glycerol (GLY) with isobutylene (IB) to produce biofuels was investigated in liquid phase using spherical silica supported Hyflon® catalysts (SSHC). As reference catalyst, Amberlyst® 15 (A-15) acid ion-exchange resin was used. Experiments were carried out in batch mode at a reaction temperature ranging from 323 to 343 K. SSHC were found to be very effective systems in etherification of glycerol with IB, providing cumulative di- and tri-ethers yields higher than that obtained by using A-15 catalyst. Furthermore, such catalysts were stable and easily reusable; no leaching of active phase was observed. The formation of poly-substituted ethers, suitable additives for conventional fuels, was favored by operating at an isobutylene/glycerol molar ratio >3 and low reaction time (<6 h); however, the concentration of mono-ether reached values lower than 3 wt.% only when SSHC catalyst was used. Turnover frequency of glycerol (TOF(GLY)) highlighted that SSHC systems were much more active than A-15 catalyst: the accessibility and nature of active sites and the surface properties of catalysts were indicated as the main factors affecting the catalytic behavior. A lower acid site density of SSHC than that of A-15 catalyst was decisive in preventing the occurrence of oligomerization reaction which leads to the formation of di-isobutylene (DIB), precursors of gummy products.


Subject(s)
Biofuels/analysis , Ethers/chemistry , Glycerol/chemistry , Silicon Dioxide/chemistry , Alkenes/chemistry , Catalysis , Chemical Phenomena , Gasoline/analysis , Porosity , Recycling , Reference Standards , Structure-Activity Relationship , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...