Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 6(11)2023 11.
Article in English | MEDLINE | ID: mdl-37591722

ABSTRACT

Cancer cells make extensive use of the folate cycle to sustain increased anabolic metabolism. Multiple chemotherapeutic drugs interfere with the folate cycle, including methotrexate and 5-fluorouracil that are commonly applied for the treatment of leukemia and colorectal cancer (CRC), respectively. Despite high success rates, therapy-induced resistance causes relapse at later disease stages. Depletion of folylpolyglutamate synthetase (FPGS), which normally promotes intracellular accumulation and activity of natural folates and methotrexate, is linked to methotrexate and 5-fluorouracil resistance and its association with relapse illustrates the need for improved intervention strategies. Here, we describe a novel antifolate (C1) that, like methotrexate, potently inhibits dihydrofolate reductase and downstream one-carbon metabolism. Contrary to methotrexate, C1 displays optimal efficacy in FPGS-deficient contexts, due to decreased competition with intracellular folates for interaction with dihydrofolate reductase. We show that FPGS-deficient patient-derived CRC organoids display enhanced sensitivity to C1, whereas FPGS-high CRC organoids are more sensitive to methotrexate. Our results argue that polyglutamylation-independent antifolates can be applied to exert selective pressure on FPGS-deficient cells during chemotherapy, using a vulnerability created by polyglutamylation deficiency.


Subject(s)
Folic Acid Antagonists , Humans , Folic Acid Antagonists/pharmacology , Methotrexate/pharmacology , Tetrahydrofolate Dehydrogenase/genetics , Folic Acid/pharmacology , Fluorouracil/pharmacology
2.
Bioinformatics ; 35(22): 4821-4823, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31141126

ABSTRACT

SUMMARY: Distinguishing biologically relevant interfaces from crystallographic ones in biological complexes is fundamental in order to associate cellular functions to the correct macromolecular assemblies. Recently, we described a detailed study reporting the differences in the type of intermolecular residue-residue contacts between biological and crystallographic interfaces. Our findings allowed us to develop a fast predictor of biological interfaces reaching an accuracy of 0.92 and competitive to the current state of the art. Here we present its web-server implementation, PRODIGY-CRYSTAL, aimed at the classification of biological and crystallographic interfaces. PRODIGY-CRYSTAL has the advantage of being fast, accurate and simple. This, together with its user-friendly interface and user support forum, ensures its broad accessibility. AVAILABILITY AND IMPLEMENTATION: PRODIGY-CRYSTAL is freely available without registration requirements at https://haddock.science.uu.nl/services/PRODIGY-CRYSTAL.


Subject(s)
Computers , Software , Internet , Macromolecular Substances , Proteins
3.
Bioinformatics ; 32(23): 3676-3678, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27503228

ABSTRACT

Gaining insights into the structural determinants of protein-protein interactions holds the key for a deeper understanding of biological functions, diseases and development of therapeutics. An important aspect of this is the ability to accurately predict the binding strength for a given protein-protein complex. Here we present PROtein binDIng enerGY prediction (PRODIGY), a web server to predict the binding affinity of protein-protein complexes from their 3D structure. The PRODIGY server implements our simple but highly effective predictive model based on intermolecular contacts and properties derived from non-interface surface. AVAILABILITY AND IMPLEMENTATION: PRODIGY is freely available at: http://milou.science.uu.nl/services/PRODIGY CONTACT: a.m.j.j.bonvin@uu.nl, a.vangone@uu.nl.


Subject(s)
Computational Biology/methods , Internet , Protein Interaction Mapping/methods , Software , Protein Binding , Protein Conformation
4.
Elife ; 4: e07454, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26193119

ABSTRACT

Almost all critical functions in cells rely on specific protein-protein interactions. Understanding these is therefore crucial in the investigation of biological systems. Despite all past efforts, we still lack a thorough understanding of the energetics of association of proteins. Here, we introduce a new and simple approach to predict binding affinity based on functional and structural features of the biological system, namely the network of interfacial contacts. We assess its performance against a protein-protein binding affinity benchmark and show that both experimental methods used for affinity measurements and conformational changes have a strong impact on prediction accuracy. Using a subset of complexes with reliable experimental binding affinities and combining our contacts and contact-types-based model with recent observations on the role of the non-interacting surface in protein-protein interactions, we reach a high prediction accuracy for such a diverse dataset outperforming all other tested methods.


Subject(s)
Computational Biology/methods , Molecular Biology/methods , Protein Interaction Maps , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...