Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cogn ; 6(1): 6, 2023.
Article in English | MEDLINE | ID: mdl-36698786

ABSTRACT

According to the associative theory of learning, reactive behaviors described by stimulus-response pairs result in the progressive wiring of a plastic brain. In contrast, flexible behaviors are supposedly driven by neurologically grounded mental states that involve computations on informational contents. These theories appear complementary, but are generally opposed to each other. The former is favored by neuro-scientists who explore the low-level biological processes supporting cognition, and the later by cognitive psychologists who look for higher-level structures. This situation can be clarified through an analysis that independently defines abstract neurological and informational functionalities, and then relate them through a virtual interface. This framework is validated through a modeling of the first stage of Piaget's cognitive development theory, whose reported end experiments demonstrate the emergence of mental representations of object displacements. The neural correlates grounding this emergence are given in the isomorphic format of an associative memory. As a child's exploration of the world progresses, his mental models will eventually include representations of space, time and causality. Only then epistemological concepts, such as beliefs, will give rise to higher level mental representations in a possibly richer propositional format. This raises the question of which additional neurological functionalities, if any, would be required in order to include these extensions into a comprehensive grounded model. We relay previously expressed views, which in summary hypothesize that the ability to learn has evolved from associative reflexes and memories, to suggest that the functionality of associative memories could well provide the sufficient means for grounding cognitive capacities.

2.
Front Neurorobot ; 14: 570358, 2020.
Article in English | MEDLINE | ID: mdl-33424574

ABSTRACT

Living organisms have either innate or acquired mechanisms for reacting to percepts with an appropriate behavior e.g., by escaping from the source of a perception detected as threat, or conversely by approaching a target perceived as potential food. In the case of artifacts, such capabilities must be built in through either wired connections or software. The problem addressed here is to define a neural basis for such behaviors to be possibly learned by bio-inspired artifacts. Toward this end, a thought experiment involving an autonomous vehicle is first simulated as a random search. The stochastic decision tree that drives this behavior is then transformed into a plastic neuronal circuit. This leads the vehicle to adopt a deterministic behavior by learning and applying a causality rule just as a conscious human driver would do. From there, a principle of using synchronized multimodal perceptions in association with the Hebb principle of wiring together neuronal cells is induced. This overall framework is implemented as a virtual machine i.e., a concept widely used in software engineering. It is argued that such an interface situated at a meso-scale level between abstracted micro-circuits representing synaptic plasticity, on one hand, and that of the emergence of behaviors, on the other, allows for a strict delineation of successive levels of complexity. More specifically, isolating levels allows for simulating yet unknown processes of cognition independently of their underlying neurological grounding.

3.
Article in English | MEDLINE | ID: mdl-30809141

ABSTRACT

A new computational framework implementing asynchronous neural dynamics is used to address the duality between synchronous vs. asynchronous processes, and their possible relation to conscious vs. unconscious behaviors. Extending previous results on modeling the first three levels of animal awareness, this formalism is used here to produce the execution traces of parallel threads that implement these models. Running simulations demonstrate how sensory stimuli associated with a population of excitatory neurons inhibit in turn other neural assemblies i.e., a kind of neuronal asynchronous wiring/unwiring process that is reflected in the progressive trimming of execution traces. Whereas, reactive behaviors relying on configural learning produce vanishing traces, the learning of a rule and its later application produce persistent traces revealing potential synchronous roots of animal awareness. In contrast, to previous formalisms that use analytical and/or statistical methods to search for patterns existing in a brain, this new framework proposes a tool for studying the emergence of brain structures that might be associated with higher level cognitive capabilities.

4.
Cogn Neurodyn ; 11(4): 327-353, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28761554

ABSTRACT

A computational architecture modeling the relation between perception and action is proposed. Basic brain processes representing synaptic plasticity are first abstracted through asynchronous communication protocols and implemented as virtual microcircuits. These are used in turn to build mesoscale circuits embodying parallel cognitive processes. Encoding these circuits into symbolic expressions gives finally rise to neuro-inspired programs that are compiled into pseudo-code to be interpreted by a virtual machine. Quantitative evaluation measures are given by the modification of synapse weights over time. This approach is illustrated by models of simple forms of behaviors exhibiting cognition up to the third level of animal awareness. As a potential benefit, symbolic models of emergent psychological mechanisms could lead to the discovery of the learning processes involved in the development of cognition. The executable specifications of an experimental platform allowing for the reproduction of simulated experiments are given in "Appendix".

SELECTION OF CITATIONS
SEARCH DETAIL
...