Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biophys J ; 122(7): 1414-1422, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36916005

ABSTRACT

Osmolytes are ubiquitous in the cell and play an important role in controlling protein stability under stress. The natural osmolyte trimethylamine N-oxide (TMAO) is used by marine animals to counteract the effect of pressure denaturation at large depths. The molecular mechanism of TMAO stabilization against pressure and urea denaturation has been extensively studied, but unlike the case of other osmolytes, the ability of TMAO to protect proteins from high temperature has not been quantified. To reveal the effect of TMAO on folded and unfolded protein ensembles and the hydration shell at different temperatures, we study a mutant of the well-characterized, fast-folding model protein B (PRB). We carried out, in total, >190 µs all-atom simulations of thermal folding/unfolding of PRB at multiple temperatures and concentrations of TMAO. The simulations show increased thermal stability of PRB in the presence of TMAO. Partly structured, compact ensembles are favored over the unfolded state. TMAO forms two shells near the protein: an outer shell away from the protein surface has altered H-bond lifetimes of water molecules and increases hydration of the protein to help stabilize it; a less-populated inner shell with an opposite TMAO orientation closer to the protein surface binds exclusively to basic side chains. The cooperative cosolute effect of the inner and outer shell TMAO has a small number of TMAO molecules "herding" water molecules into two hydration shells at or near the protein surface. The stabilizing effect of TMAO on our protein saturates at 1 M despite higher TMAO solubility, so there may be little evolutionary pressure for extremophiles to produce higher intracellular TMAO concentrations, if true in general.


Subject(s)
Hot Temperature , Proteins , Animals , Proteins/chemistry , Methylamines/chemistry , Water/chemistry , Urea
2.
Phys Rev X ; 9(4)2019.
Article in English | MEDLINE | ID: mdl-32642303

ABSTRACT

In the cell, proteins fold and perform complex functions through global structural rearrangements. Function requires a protein to be at the brink of stability to be susceptible to small environmental fluctuations, yet stable enough to maintain structural integrity. These apparently conflicting behaviors are exhibited by systems near a critical point, where distinct phases merge-a concept beyond previous studies indicating proteins have a well-defined folded/unfolded phase boundary in the pressure-temperature plane. Here, by modeling the protein phosphoglycerate kinase (PGK) on the temperature (T), pressure (P), and crowding volume-fraction (ϕ) phase diagram, we demonstrate a critical transition where phases merge, and PGK exhibits large structural fluctuations. Above the critical point, the difference between the intermediate and unfolded phases disappears. When ϕ increases, the critical point moves to lower T c. We verify the calculations with experiments mapping the T-P-ϕ space, which likewise reveal a critical point at 305 K and 170 MPa that moves to lower T c as ϕ increases. Crowding places PGK near a critical line in its natural parameter space, where large conformational changes can occur without costly free energy barriers. Specific structures are proposed for each phase based on simulation.

SELECTION OF CITATIONS
SEARCH DETAIL