Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35408559

ABSTRACT

A new biodegradable platform-based sensor for formaldehyde assay is proposed. Natural rubber latex was modified to polylactic acid-chloroacetated natural rubber polymer blend sheets. The polymer blend sheet was grafted using a water-based system with amine monomers as a platform, with a spot exhibiting positive polarity for immobilizing with anionic dye (Acid Red 27). The sensor was exposed to formaldehyde. The color intensity of the dye on the sensor spot would decrease. Using a smartphone with image processing (via ImageJ program), the color intensity change (∆B) could be followed. A linear calibration, ∆B intensity = 0.365 [FA] + 6.988, R2 = 0.997, was obtained for 10-150 mM FA with LOD and LOQ at 3 and 10 mM, respectively (linear regression method). The precision was lower than 20% RSD. Application to real seafood samples was demonstrated. The ready-to-use sensor with the proposed method was cost-effective, was portable for on-site analysis, and demonstrated green chemical analysis.


Subject(s)
Rubber , Smartphone , Formaldehyde/analysis , Seafood/analysis , Water
2.
Mater Sci Eng C Mater Biol Appl ; 103: 109829, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31349406

ABSTRACT

The novel biodegradable films of chloroacetated natural rubber/polyvinyl alcohol (CNR/PVA) (55/45 wt%) non-woven nanofiber films encapsulated with kaolin and starch (2.5 and 5 wt%) were produced successfully by green electrospinning technique. The effect of fillers with different content on the physical, chemical, mechanical, biocompatibility and biodegradation properties of CNR/PVA nanofiber films were investigated. The higher crystallinity obtained in CNR/PVA encapsulate with 2.5 wt% kaolin and nanofibers were formed with the maximum diameter distribution and mean value of 40-160 nm and 94.15 ±â€¯54.19 nm respectively. DSC and DMA revealed the kaolin can improve the interfacial adhesion between CNR and PVA and contribute to enhancing the chemical interactions. The mechanical properties improved upon encapsulation of starch and kaolin and more favourable nanofibers with smaller diameter obtained using kaolin rather than starch. The cytotoxicity results revealed the viability of the prepared nanofiber films with human dermal fibroblast cell. Furthermore, the incorporation of starch and kaolin accelerated the degradation rate and the highest enzymatic degradation obtained with 2.5 wt% of starch. The prepared nanofiber films have the potential to be applied for the skin tissue engineering scaffold applications.


Subject(s)
Dermis/metabolism , Fibroblasts/metabolism , Materials Testing , Membranes, Artificial , Nanofibers/chemistry , Polyvinyl Alcohol/chemistry , Rubber/chemistry , Tissue Scaffolds/chemistry , Cell Line , Dermis/cytology , Fibroblasts/cytology , Humans , Kaolin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...