Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 806(Pt 4): 150893, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34653448

ABSTRACT

Manufactured silica nanoparticles are used worldwide in large volumes for a variety of applications. An exposure of environmental organisms is therefore likely, and several data on the ecotoxicology of silica nanoparticles to different organisms have been published in recent years. This systematic review compiles and assesses these studies, in order to analyse the sensitivity distribution across different organisms. On this basis, maximum acceptable environmental concentrations are suggested and potential environmental risks are discussed. 1429 papers were retrieved from the scientific literature (Scopus), the U.S. ECOTOX knowledge database. 63 studies were finally included in the review and appraised according to the nanoCRED criteria. A total of 219 ecotoxicological endpoints recorded in 38 species (7 taxonomic groups) were condensed into a species sensitivity distribution. The resulting concentration that is hazardous for a maximum of 5% of exposed species (HC05) is 130 µg/L, from which a PNEC of 30 µg/L is estimated by applying an assessment factor of 5. These concentrations are 1-3 orders of magnitudes above the concentrations modelled to occur in European aquatic ecosystems. Algae and bacteria have a comparatively low sensitivity to MSNP exposure, likely because their cell wall forms a protective barrier against nanoparticle exposure. Similarly, embryonic stages of fish also show a comparatively low sensitivity due to the protection from their chorion. However, the fish species Labeo rohita and Oncorhynchus mykiss are among the most sensitive species. The ecotoxicity of silica nanoparticles is linked to the number of hydroxyl groups on their surface, corresponding to findings from human toxicological studies. It is recommended that future ecotoxicological studies use explicit concentration-response designs, use proven biocide-free testing material, comparatively apply mass and surface area as exposure metrics, and provide important metainformation in the study report.


Subject(s)
Cyprinidae , Nanoparticles , Water Pollutants, Chemical , Animals , Aquatic Organisms , Ecosystem , Ecotoxicology , Humans , Nanoparticles/toxicity , Risk Assessment , Silicon Dioxide/toxicity , Water Pollutants, Chemical/toxicity
3.
Ecotoxicol Environ Saf ; 207: 111523, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33120279

ABSTRACT

The textile industry, while of major importance in the world economy, is a toxic industry utilizing and emitting thousands of chemical substances into the aquatic environment. The aim of this project was to study the potentially harmful effects associated with the leaching of chemical residues from three different types of textiles: sportswear, children's bath towels, and denim using different fish models (cell lines, fish larvae and juvenile fish). A combination of in vitro and in vivo test systems was used. Numerous biomarkers, ranging from gene expression, cytotoxicity and biochemical analysis to behavior, were measured to detect effects of leached chemicals. Principle findings indicate that leachates from all three types of textiles induced cytotoxicity on fish cell lines (RTgill-W1). Leachates from sportswear and towels induced mortality in zebrafish embryos, and chemical residues from sportswear reduced locomotion responses in developing larval fish. Sportswear leachate increased Cyp1a mRNA expression and EROD activity in liver of exposed brown trout. Leachates from towels induced EROD activity and VTG in rainbow trout, and these effects were mitigated by the temperature of the extraction process. All indicators of toxicity tested showed that exposure to textile leachate can cause adverse reactions in fish. These findings suggested that chemical leaching from textiles from domestic households could pose an ecotoxicological threat to the health of the aquatic environment.


Subject(s)
Oncorhynchus mykiss/physiology , Textile Industry , Toxicity Tests , Water Pollutants, Chemical/toxicity , Animals , Ecotoxicology , Gene Expression , Liver/drug effects , Textiles
SELECTION OF CITATIONS
SEARCH DETAIL
...