Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
1.
Climacteric ; : 1-9, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695574

ABSTRACT

OBJECTIVE: This study aimed to examine sex differences in factors associated with mood and anxiety in midlife men and women during the COVID-19 pandemic. METHODS: During a remote visit, 312 adults aged 40-60 years (167 female; 23.6% perimenopausal) from the Human Connectome Project in Aging completed PROMIS measures of depression, anxiety and anger/irritability; perceived stress; and questions about social support, financial stress and menopause stage. Multivariate linear regression models assessed sex differences in mental health and the association of social support, financial stress and menopause stage with mental health. RESULTS: Anxiety was higher in women than in men (b = 2.39, p = 0.02). For women only, decreased social support was associated with increased anxiety (b = -2.26, p = 0.002), anger/irritability (b = -1.89, p = 0.02) and stress (b = -1.67, p = 0.002). For women only, not having close family was associated with increased depressive symptoms (b = -6.60, p = 0.01) and stress (b = -7.03, p < 0.001). For both sexes, having children was associated with lower depressive symptoms (b = -3.08, p = 0.002), anxiety (b = -1.93, p = 0.07), anger/irritability (b = -2.73, p = 0.02) and stress (b = -1.44, p = 0.07). Menopause stage was unrelated to mental health. CONCLUSION: Social support, but not financial stress, influenced mental health during the COVID-19 pandemic at midlife, particularly for women.

2.
Mol Autism ; 15(1): 19, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38711098

ABSTRACT

BACKGROUND: Most children with Autism Spectrum Disorder (ASD) have co-occurring language impairments and some of these autism-specific language difficulties are also present in their non-autistic first-degree relatives. One of the possible neural mechanisms associated with variability in language functioning is alterations in cortical gamma-band oscillations, hypothesized to be related to neural excitation and inhibition balance. METHODS: We used a high-density 128-channel electroencephalography (EEG) to register brain response to speech stimuli in a large sex-balanced sample of participants: 125 youth with ASD, 121 typically developing (TD) youth, and 40 unaffected siblings (US) of youth with ASD. Language skills were assessed with Clinical Evaluation of Language Fundamentals. RESULTS: First, during speech processing, we identified significantly elevated gamma power in ASD participants compared to TD controls. Second, across all youth, higher gamma power was associated with lower language skills. Finally, the US group demonstrated an intermediate profile in both language and gamma power, with nonverbal IQ mediating the relationship between gamma power and language skills. LIMITATIONS: We only focused on one of the possible neural contributors to variability in language functioning. Also, the US group consisted of a smaller number of participants in comparison to the ASD or TD groups. Finally, due to the timing issue in EEG system we have provided only non-phase-locked analysis. CONCLUSIONS: Autistic youth showed elevated gamma power, suggesting higher excitation in the brain in response to speech stimuli and elevated gamma power was related to lower language skills. The US group showed an intermediate pattern of gamma activity, suggesting that the broader autism phenotype extends to neural profiles.


Subject(s)
Autism Spectrum Disorder , Electroencephalography , Gamma Rhythm , Humans , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/psychology , Male , Female , Adolescent , Child , Language , Family , Siblings
3.
Front Psychiatry ; 15: 1337921, 2024.
Article in English | MEDLINE | ID: mdl-38590791

ABSTRACT

The cerebellum has been consistently shown to be atypical in autism spectrum disorder (ASD). However, despite its known role in sensorimotor function, there is limited research on its association with sensory over-responsivity (SOR), a common and impairing feature of ASD. Thus, this study sought to examine functional connectivity of the sensorimotor cerebellum in ASD compared to typically developing (TD) youth and investigate whether cerebellar connectivity is associated with SOR. Resting-state functional connectivity of the sensorimotor cerebellum was examined in 54 ASD and 43 TD youth aged 8-18 years. Using a seed-based approach, connectivity of each sensorimotor cerebellar region (defined as lobules I-IV, V-VI and VIIIA&B) with the whole brain was examined in ASD compared to TD youth, and correlated with parent-reported SOR severity. Across all participants, the sensorimotor cerebellum was functionally connected with sensorimotor and visual regions, though the three seed regions showed distinct connectivity with limbic and higher-order sensory regions. ASD youth showed differences in connectivity including atypical connectivity within the cerebellum and increased connectivity with hippocampus and thalamus compared to TD youth. More severe SOR was associated with stronger connectivity with cortical regions involved in sensory and motor processes and weaker connectivity with cognitive and socio-emotional regions, particularly prefrontal cortex. These results suggest that atypical cerebellum function in ASD may play a role in sensory challenges in autism.

4.
Commun Biol ; 7(1): 485, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649483

ABSTRACT

Converging evidence implicates disrupted brain connectivity in autism spectrum disorder (ASD); however, the mechanisms linking altered connectivity early in development to the emergence of ASD symptomatology remain poorly understood. Here we examined whether atypicalities in the Salience Network - an early-emerging neural network involved in orienting attention to the most salient aspects of one's internal and external environment - may predict the development of ASD symptoms such as reduced social attention and atypical sensory processing. Six-week-old infants at high likelihood of developing ASD based on family history exhibited stronger Salience Network connectivity with sensorimotor regions; infants at typical likelihood of developing ASD demonstrated stronger Salience Network connectivity with prefrontal regions involved in social attention. Infants with higher connectivity with sensorimotor regions had lower connectivity with prefrontal regions, suggesting a direct tradeoff between attention to basic sensory versus socially-relevant information. Early alterations in Salience Network connectivity predicted subsequent ASD symptomatology, providing a plausible mechanistic account for the unfolding of atypical developmental trajectories associated with vulnerability to ASD.


Subject(s)
Autism Spectrum Disorder , Humans , Infant , Male , Female , Autism Spectrum Disorder/physiopathology , Magnetic Resonance Imaging , Nerve Net/physiopathology , Attention/physiology , Brain/physiopathology , Brain/growth & development , Neural Pathways/physiopathology
5.
Psychiatry Res Neuroimaging ; 339: 111791, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38359709

ABSTRACT

Dimensional models of psychopathology may provide insight into mechanisms underlying comorbid depression and anxiety and improve specificity and sensitivity of neuroanatomical findings. The present study is the first to examine neural structure alterations using the empirically derived Tri-level Model. Depression and anxiety symptoms of 269 young adults were assessed using the Tri-level Model dimensions: General Distress (transdiagnostic depression and anxiety symptoms), Anhedonia-Apprehension (relatively specific depression symptoms), and Fears (specific anxiety symptoms). Using structural MRI, gray matter volumes were extracted for emotion generation (amygdala, nucleus accumbens) and regulation (orbitofrontal, ventrolateral, and dorsolateral prefrontal cortex) regions, often implicated in depression and anxiety. Each Tri-level symptom was regressed onto each region of interest, separately, adjusting for relevant covariates. General Distress was significantly associated with smaller gray matter volumes in bilateral orbitofrontal cortex and ventrolateral prefrontal cortex, independent of Anhedonia-Apprehension and Fears symptom dimensions. These results suggests that prefrontal alterations are associated with transdiagnostic dysphoric mood common across depression and anxiety, rather than unique symptoms of these disorders. Additionally, no regions of interest were associated with Anhedonia-Apprehension or Fears, highlighting the importance of studying transdiagnostic features of depression and anxiety. This has implications for understanding mechanisms of and interventions for depression and anxiety.


Subject(s)
Depression , Gray Matter , Young Adult , Humans , Gray Matter/diagnostic imaging , Gray Matter/pathology , Depression/diagnostic imaging , Depression/complications , Anhedonia , Anxiety/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/pathology
6.
Brain Behav Immun ; 117: 215-223, 2024 03.
Article in English | MEDLINE | ID: mdl-38244947

ABSTRACT

BACKGROUND: Severe, chronic stress during childhood accentuates vulnerability to mental and physical health problems across the lifespan. To explain this phenomenon, the neuroimmune network hypothesis proposes that childhood stressors amplify signaling between peripheral inflammatory cells and developing brain circuits that support processing of rewards and threats. Here, we conducted a preliminary test of the basic premises of this hypothesis. METHODS: 180 adolescents (mean age = 19.1 years; 68.9 % female) with diverse racial and ethnic identities (56.1 % White; 28.3 % Hispanic; 26.1 % Asian) participated. The Childhood Trauma Interview was administered to quantify early adversity. Five inflammatory biomarkers were assayed in antecubital blood - C-reactive protein, tumor necrosis factor-a, and interleukins-6, -8, and -10 - and were averaged to form a composite score. Participants also completed a functional MRI task to measure corticostriatal responsivity to the anticipation and acquisition of monetary rewards. RESULTS: Stress exposure and corticostriatal responsivity interacted statistically to predict the inflammation composite. Among participants who experienced major stressors in the first decade of life, higher inflammatory activity covaried with lower corticostriatal responsivity during acquisition of monetary rewards. This relationship was specific to participants who experienced major stress in early childhood, implying a sensitive period for exposure, and were evident in both the orbitofrontal cortex and the ventral striatum, suggesting the broad involvement of corticostriatal regions. The findings were independent of participants' age, sex, racial and ethnic identity, family income, and depressive symptoms. CONCLUSIONS: Collectively, the results are consistent with hypotheses suggesting that major stress in childhood alters brain-immune signaling.


Subject(s)
Adverse Childhood Experiences , Adolescent , Child, Preschool , Female , Humans , Male , Young Adult , Brain , C-Reactive Protein , Hispanic or Latino , Income , White , Asian , Reward , Stress, Psychological
7.
J Neurosci Res ; 102(1): e25250, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37840458

ABSTRACT

Sensory over-responsivity (SOR) is a prevalent cross-diagnostic condition that is often associated with anxiety. The biological mechanisms underlying the co-occurrence of SOR and anxiety symptoms are not well understood, despite having important implications for targeted intervention. We therefore investigated the unique associations of SOR and anxiety symptoms with physiological and neural responses to sensory stimulation for youth with anxiety disorders (ANX), autism spectrum disorder (ASD), or typical development (TD). Age/IQ-matched youth aged 8-18 years (22 ANX; 30 ASD; 22 TD) experienced mildly aversive tactile and auditory stimuli during functional magnetic resonance imaging and then during skin conductance response (SCR) and heart rate (HR) measurements. Caregivers reported on participants' SOR and anxiety symptoms. ASD/ANX youth had elevated SOR and anxiety symptoms compared to TD. ASD/ANX youth showed similar, heightened brain responses to sensory stimulation compared to TD youth, but brain responses were more highly related to SOR symptoms in ASD youth and to anxiety symptoms in ANX youth. Across ASD/ANX youth, anxiety symptoms uniquely related to greater SCR whereas SOR uniquely related to greater HR responses to sensory stimulation. Behavioral and neurobiological over-responsivity to sensory stimulation was shared across diagnostic groups. However, findings support SOR and anxiety as distinct symptoms with unique biological mechanisms, and with different relationships to neural over-reactivity dependent on diagnostic group. Results indicate a need for targeted treatment approaches.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Adolescent , Anxiety , Anxiety Disorders , Prefrontal Cortex , Magnetic Resonance Imaging
8.
Mol Autism ; 14(1): 38, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37817282

ABSTRACT

BACKGROUND: Sensory over-responsivity (SOR) is an impairing sensory processing challenge in autism spectrum disorder (ASD) which shows heterogenous developmental trajectories and appears to improve into adulthood in some but not all autistic individuals. However, the neural mechanisms underlying interindividual differences in these trajectories are currently unknown. METHODS: Here, we used functional magnetic resonance imaging (fMRI) to investigate the association between age and neural activity linearly and nonlinearly in response to mildly aversive sensory stimulation as well as how SOR severity moderates this association. Participants included 52 ASD (14F) and 41 (13F) typically developing (TD) youth, aged 8.6-18.0 years. RESULTS: We found that in pre-teens, ASD children showed widespread activation differences in sensorimotor, frontal and cerebellar regions compared to TD children, while there were fewer differences between ASD and TD teens. In TD youth, older age was associated with less activation in the prefrontal cortex. In contrast, in ASD youth, older age was associated with more engagement of sensory integration and emotion regulation regions. In particular, orbitofrontal and medial prefrontal cortices showed a nonlinear relationship with age in ASD, with an especially steep increase in sensory-evoked neural activity during the mid-to-late teen years. There was also an interaction between age and SOR severity in ASD youth such that these age-related trends were more apparent in youth with higher SOR. LIMITATIONS: The cross-sectional design limits causal interpretations of the data. Future longitudinal studies will be instrumental in determining how prefrontal engagement and SOR co-develop across adolescence. CONCLUSIONS: Our results suggest that enhanced recruitment of prefrontal regions may underlie age-related decreases in SOR for a subgroup of ASD youth.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Adolescent , Child , Humans , Autistic Disorder/diagnostic imaging , Cross-Sectional Studies , Prefrontal Cortex/diagnostic imaging , Cerebellum , Magnetic Resonance Imaging/methods
9.
Autism Res ; 16(12): 2364-2377, 2023 12.
Article in English | MEDLINE | ID: mdl-37776030

ABSTRACT

In youth broadly, EEG frontal alpha asymmetry (FAA) associates with affective style and vulnerability to psychopathology, with relatively stronger right activity predicting risk for internalizing and externalizing behaviors. In autistic youth, FAA has been related to ASD diagnostic features and to internalizing symptoms. Among our large, rigorously characterized, sex-balanced participant group, we attempted to replicate findings suggestive of altered FAA in youth with an ASD diagnosis, examining group differences and impact of sex assigned at birth. Second, we examined relations between FAA and behavioral variables (ASD features, internalizing, and externalizing) within autistic youth, examining effects by sex. Third, we explored whether the relation between FAA, autism features, and mental health was informed by maternal depression history. In our sample, FAA did not differ by diagnosis, age, or sex. However, youth with ASD had lower total frontal alpha power than youth without ASD. For autistic females, FAA and bilateral frontal alpha power correlated with social communication features, but not with internalizing or externalizing symptoms. For autistic males, EEG markers correlated with social communication features, and with externalizing behaviors. Exploratory analyses by sex revealed further associations between youth FAA, behavioral indices, and maternal depression history. In summary, findings suggest that individual differences in FAA may correspond to social-emotional and mental health behaviors, with different patterns of association for females and males with ASD. Longitudinal consideration of individual differences across levels of analysis (e.g., biomarkers, family factors, and environmental influences) will be essential to parsing out models of risk and resilience among autistic youth.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Infant, Newborn , Humans , Male , Female , Adolescent , Autistic Disorder/complications , Sex Characteristics , Autism Spectrum Disorder/psychology , Emotions , Electroencephalography
10.
J Alzheimers Dis ; 96(1): 329-342, 2023.
Article in English | MEDLINE | ID: mdl-37742646

ABSTRACT

BACKGROUND: A carbohydrate-restricted diet aimed at lowering insulin levels has the potential to slow Alzheimer's disease (AD). Restricting carbohydrate consumption reduces insulin resistance, which could improve glucose uptake and neural health. A hallmark feature of AD is widespread cortical thinning; however, no study has demonstrated that lower net carbohydrate (nCHO) intake is linked to attenuated cortical atrophy in patients with AD and confirmed amyloidosis. OBJECTIVE: We tested the hypothesis that individuals with AD and confirmed amyloid burden eating a carbohydrate-restricted diet have thicker cortex than those eating a moderate-to-high carbohydrate diet. METHODS: A total of 31 patients (mean age 71.4±7.0 years) with AD and confirmed amyloid burden were divided into two groups based on a 130 g/day nCHO cutoff. Cortical thickness was estimated from T1-weighted MRI using FreeSurfer. Cortical surface analyses were corrected for multiple comparisons using cluster-wise probability. We assessed group differences using a two-tailed two-independent sample t-test. Linear regression analyses using nCHO as a continuous variable, accounting for confounders, were also conducted. RESULTS: The lower nCHO group had significantly thicker cortex within somatomotor and visual networks. Linear regression analysis revealed that lower nCHO intake levels had a significant association with cortical thickness within the frontoparietal, cingulo-opercular, and visual networks. CONCLUSIONS: Restricting carbohydrates may be associated with reduced atrophy in patients with AD. Lowering nCHO to under 130 g/day would allow patients to follow the well-validated MIND diet while benefiting from lower insulin levels.


Subject(s)
Alzheimer Disease , Insulins , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/complications , Magnetic Resonance Imaging , Positron-Emission Tomography , Amyloid , Amyloidogenic Proteins , Diet, Carbohydrate-Restricted , Carbohydrates , Atrophy/complications
11.
Clin Psychol Sci ; 11(5): 910-920, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37766940

ABSTRACT

Negative or stressful life events are robust risk factors for depression and anxiety. Less attention has been paid to positive aspects of events and whether positivity buffers the impact of negative aspects of events. The present study examined positivity and negativity of interpersonal and non-interpersonal episodic life events in predicting anxiety and depressive symptoms in a sample of 373 young adults. Regressions tested main and interactive effects of positivity and negativity ratings of events in predicting symptom factors (Fears, Anhedonia-Apprehension (AA), General Distress (GD)) relevant to anxiety and depression. A significant interaction demonstrated that positivity protected against high levels of negativity of non-interpersonal events in predicting GD. A main effect of interpersonal negativity predicting higher AA was observed. Results for Fears were non-significant. Findings suggest that positivity of life events may buffer against negativity in predicting symptoms shared between anxiety and depression.

12.
Child Abuse Negl ; : 106446, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37704547

ABSTRACT

BACKGROUND: Adolescents, particularly racial and ethnic minorities, are at increased risk for neighborhood threat and violence exposure, which impacts behavioral and neural outcomes. Caregiver support is associated with healthy socioemotional adjustment and self-regulatory and coping behaviors; however, it remains unclear whether caregiver support, specifically, consolation, can moderate the behavioral and neural impacts of neighborhood threat. OBJECTIVE: The aim of this study was to examine the role of youth-perceived neighborhood threat on neural and behavioral correlates and to test the moderating potential of caregiver support. Sex differences in associations were examined. PARTICIPANTS AND SETTING: 11,559 nine- and ten-year old youth enrolled in the multi-site Adolescent Brain Cognitive Development (ABCD) Study at baseline. METHODS: Associations were examined via linear regression models employing youth-perceived neighborhood threat and caregiver support. Regression and interaction models controlled for youth age, sex, race and ethnicity, primary caregiver's education, family income, family structure, youth-perceived school threat, and intracranial volume when examining neural outcomes. An ANOVA employing a Chi-square test and simple slopes analysis were used to identify significant interactions in moderation models. RESULTS: Neighborhood threat is associated with structural alterations in the left amygdala (p = .004). Meanwhile, caregiver support interacts in a dose-response fashion with neighborhood threat to attenuate its relationship with left amygdala volume (p = .008). Among youth reporting neighborhood threat, problematic behaviors were more common (p < .0001). While not significant, males reported higher rates of neighborhood threat than females (p = .267). Females reported greater levels of caregiver support (p = .017). Lastly, racial and ethnic differences in neighborhood threat and caregiver support were evident (p < .001). CONCLUSIONS: While youth may not have been exposed to direct or immediate sources of threat and violence, these findings shed light on the impact of neighborhood threat perception on problematic behaviors and amygdala volume among nine- and ten-year olds. Future research should identify other culturally inclusive sources and measures of support and resiliency.

13.
bioRxiv ; 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37645883

ABSTRACT

Introduction: Threat learning and extinction processes are thought to be foundational to anxiety and fear-related disorders. However, the study of these processes in the human brain has largely focused on a priori regions of interest, owing partly to the ease of translating between these regions in human and non-human animals. Moving beyond analyzing focal regions of interest to whole-brain dynamics during threat learning is essential for understanding the neuropathology of fear-related disorders in humans. Methods: 223 participants completed a 2-day Pavlovian threat conditioning paradigm while undergoing fMRI. Participants completed threat acquisition and extinction. Extinction recall was assessed 48 hours later. Using a data-driven group independent component analysis (ICA), we examined large-scale functional connectivity networks during each phase of threat conditioning. Connectivity networks were tested to see how they responded to conditional stimuli during early and late phases of threat acquisition and extinction and during early trials of extinction recall. Results: A network overlapping with the default mode network involving hippocampus, vmPFC, and posterior cingulate was implicated in threat acquisition and extinction. Another network overlapping with the salience network involving dACC, mPFC, and inferior frontal gyrus was implicated in threat acquisition and extinction recall. Other networks overlapping with parts of the salience, somatomotor, visual, and fronto-parietal networks were involved in the acquisition or extinction of learned threat responses. Conclusions: These findings help confirm previous investigations of specific brain regions in a model-free fashion and introduce new findings of spatially independent networks during threat and safety learning. Rather than being a single process in a core network of regions, threat learning involves multiple brain networks operating in parallel coordinating different functions at different timescales. Understanding the nature and interplay of these dynamics will be critical for comprehensive understanding of the multiple processes that may be at play in the neuropathology of anxiety and fear-related disorders.

14.
Neuroimage Clin ; 39: 103458, 2023.
Article in English | MEDLINE | ID: mdl-37421927

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and atrophy in the medial temporal lobe (MTL) and subsequent brain regions. Structural magnetic resonance imaging (sMRI) has been widely used in research and clinical care for diagnosis and monitoring AD progression. However, atrophy patterns are complex and vary by patient. To address this issue, researchers have made efforts to develop more concise metrics that can summarize AD-specific atrophy. Many of these methods can be difficult to interpret clinically, hampering adoption. In this study, we introduce a novel index which we call an "AD-NeuroScore," that uses a modified Euclidean-inspired distance function to calculate differences between regional brain volumes associated with cognitive decline. The index is adjusted for intracranial volume (ICV), age, sex, and scanner model. We validated AD-NeuroScore using 929 older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, with a mean age of 72.7 years (SD = 6.3; 55.1-91.5) and cognitively normal (CN), mild cognitive impairment (MCI), or AD diagnoses. Our validation results showed that AD-NeuroScore was significantly associated with diagnosis and disease severity scores (measured by MMSE, CDR-SB, and ADAS-11) at baseline. Furthermore, baseline AD-NeuroScore was associated with both changes in diagnosis and disease severity scores at all time points with available data. The performance of AD-NeuroScore was equivalent or superior to adjusted hippocampal volume (AHV), a widely used metric in AD research. Further, AD-NeuroScore typically performed as well as or sometimes better when compared to other existing sMRI-based metrics. In conclusion, we have introduced a new metric, AD-NeuroScore, which shows promising results in detecting AD, benchmarking disease severity, and predicting disease progression. AD-NeuroScore differentiates itself from other metrics by being clinically practical and interpretable.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Aged , Alzheimer Disease/pathology , Neurodegenerative Diseases/pathology , Temporal Lobe/pathology , Magnetic Resonance Imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Atrophy/diagnostic imaging , Atrophy/pathology , Disease Progression
15.
BMC Med Res Methodol ; 23(1): 164, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37420169

ABSTRACT

BACKGROUND: Adversity occurring during development is associated with detrimental health and quality of life outcomes, not just following exposure but throughout the lifespan. Despite increased research, there exists both overlapping and distinct definitions of early life adversity exposure captured by over 30 different empirically validated tools. A data-driven approach to defining and cataloging exposure is needed to better understand associated outcomes and advance the field. METHODS: We utilized baseline data on 11,566 youth enrolled in the ABCD Study to catalog youth and caregiver-reported early life adversity exposure captured across 14 different measures. We employed an exploratory factor analysis to identify the factor domains of early life adversity exposure and conducted a series of regression analyses to examine its association with problematic behavioral outcomes. RESULTS: The exploratory factor analysis yielded a 6-factor solution corresponding to the following distinct domains: 1) physical and sexual violence; 2) parental psychopathology; 3) neighborhood threat; 4) prenatal substance exposure; 5) scarcity; and 6) household dysfunction. The prevalence of exposure among 9-and 10-year-old youth was largely driven by the incidence of parental psychopathology. Sociodemographic characteristics significantly differed between youth with adversity exposure and controls, depicting a higher incidence of exposure among racial and ethnic minoritized youth, and among those identifying with low socioeconomic status. Adversity exposure was significantly associated with greater problematic behaviors and largely driven by the incidence of parental psychopathology, household dysfunction and neighborhood threat. Certain types of early life adversity exposure were more significantly associated with internalizing as opposed to externalizing problematic behaviors. CONCLUSIONS: We recommend a data-driven approach to define and catalog early life adversity exposure and suggest the incorporation of more versus less data to capture the nuances of exposure, e.g., type, age of onset, frequency, duration. The broad categorizations of early life adversity exposure into two domains, such as abuse and neglect, or threat and deprivation, fail to account for the routine co-occurrence of exposures and the duality of some forms of adversity. The development and use of a data-driven definition of early life adversity exposure is a crucial step to lessening barriers to evidence-based treatments and interventions for youth.


Subject(s)
Adverse Childhood Experiences , Female , Adolescent , Pregnancy , Humans , Child , Quality of Life
16.
Neuroimage ; 276: 120192, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37247763

ABSTRACT

Several cardiovascular and metabolic indicators, such as cholesterol and blood pressure have been associated with altered neural and cognitive health as well as increased risk of dementia and Alzheimer's disease in later life. In this cross-sectional study, we examined how an aggregate index of cardiovascular and metabolic risk factor measures was associated with correlation-based estimates of resting-state functional connectivity (FC) across a broad adult age-span (36-90+ years) from 930 volunteers in the Human Connectome Project Aging (HCP-A). Increased (i.e., worse) aggregate cardiometabolic scores were associated with reduced FC globally, with especially strong effects in insular, medial frontal, medial parietal, and superior temporal regions. Additionally, at the network-level, FC between core brain networks, such as default-mode and cingulo-opercular, as well as dorsal attention networks, showed strong effects of cardiometabolic risk. These findings highlight the lifespan impact of cardiovascular and metabolic health on whole-brain functional integrity and how these conditions may disrupt higher-order network integrity.


Subject(s)
Cardiovascular Diseases , Connectome , Middle Aged , Humans , Aged , Adult , Aged, 80 and over , Connectome/methods , Cross-Sectional Studies , Aging/physiology , Brain/diagnostic imaging , Brain/physiology , Cardiovascular Diseases/diagnostic imaging , Magnetic Resonance Imaging
17.
Cereb Cortex ; 33(12): 8075-8086, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37005061

ABSTRACT

Despite growing evidence implicating thalamic functional connectivity atypicalities in autism spectrum disorder (ASD), it remains unclear how such alterations emerge early in human development. Because the thalamus plays a critical role in sensory processing and neocortical organization early in life, its connectivity with other cortical regions could be key for studying the early onset of core ASD symptoms. Here, we investigated emerging thalamocortical functional connectivity in infants at high (HL) and typical (TL) familial likelihood for ASD in early and late infancy. We report significant thalamo-limbic hyperconnectivity in 1.5-month-old HL infants, and thalamo-cortical hypoconnectivity in prefrontal and motor regions in 9-month-old HL infants. Importantly, early sensory over-responsivity (SOR) symptoms in HL infants predicted a direct trade-off in thalamic connectivity whereby stronger thalamic connectivity with primary sensory regions and basal ganglia was inversely related to connectivity with higher order cortices. This trade-off suggests that ASD may be characterized by early differences in thalamic gating. The patterns reported here could directly underlie atypical sensory processing and attention to social vs. nonsocial stimuli observed in ASD. These findings lend support to a theoretical framework of ASD whereby early disruptions in sensorimotor processing and attentional biases early in life may cascade into core ASD symptomatology.


Subject(s)
Autism Spectrum Disorder , Humans , Infant , Magnetic Resonance Imaging , Thalamus , Basal Ganglia , Probability
18.
Front Neural Circuits ; 17: 1120410, 2023.
Article in English | MEDLINE | ID: mdl-37091318

ABSTRACT

Background: Low intensity, transcranial focused ultrasound (tFUS) is a re-emerging brain stimulation technique with the unique capability of reaching deep brain structures non-invasively. Objective/Hypothesis: We sought to demonstrate that tFUS can selectively and accurately target and modulate deep brain structures in humans important for emotional functioning as well as learning and memory. We hypothesized that tFUS would result in significant longitudinal changes in perfusion in the targeted brain region as well as selective modulation of BOLD activity and BOLD-based functional connectivity of the target region. Methods: In this study, we collected MRI before, simultaneously during, and after tFUS of two deep brain structures on different days in sixteen healthy adults each serving as their own control. Using longitudinal arterial spin labeling (ASL) MRI and simultaneous blood oxygen level dependent (BOLD) functional MRI, we found changes in cerebral perfusion, regional brain activity and functional connectivity specific to the targeted regions of the amygdala and entorhinal cortex (ErC). Results: tFUS selectively increased perfusion in the targeted brain region and not in the contralateral homolog or either bilateral control region. Additionally, tFUS directly affected BOLD activity in a target specific fashion without engaging auditory cortex in any analysis. Finally, tFUS resulted in selective modulation of the targeted functional network connectivity. Conclusion: We demonstrate that tFUS can selectively modulate perfusion, neural activity and connectivity in deep brain structures and connected networks. Lack of auditory cortex findings suggests that the mechanism of tFUS action is not due to auditory or acoustic startle response but rather a direct neuromodulatory process. Our findings suggest that tFUS has the potential for future application as a novel therapy in a wide range of neurological and psychiatric disorders associated with subcortical pathology.


Subject(s)
Brain Mapping , Reflex, Startle , Adult , Humans , Brain Mapping/methods , Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging/methods , Perfusion
19.
Genome Biol ; 24(1): 42, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36882872

ABSTRACT

BACKGROUND: Increased expression of the complement component 4A (C4A) gene is associated with a greater lifetime risk of schizophrenia. In the brain, C4A is involved in synaptic pruning; yet, it remains unclear the extent to which upregulation of C4A alters brain development or is associated with the risk for psychotic symptoms in childhood. Here, we perform a multi-ancestry phenome-wide association study in 7789 children aged 9-12 years to examine the relationship between genetically regulated expression (GREx) of C4A, childhood brain structure, cognition, and psychiatric symptoms. RESULTS: While C4A GREx is not related to childhood psychotic experiences, cognition, or global measures of brain structure, it is associated with a localized reduction in regional surface area (SA) of the entorhinal cortex. Furthermore, we show that reduced entorhinal cortex SA at 9-10 years predicts a greater number and severity of psychosis-like events at 1-year and 2-year follow-up time points. We also demonstrate that the effects of C4A on the entorhinal cortex are independent of genome-wide polygenic risk for schizophrenia. CONCLUSIONS: Our results suggest neurodevelopmental effects of C4A on childhood medial temporal lobe structure, which may serve as a biomarker for schizophrenia risk prior to symptom onset.


Subject(s)
Brain , Cognition , Complement C4 , Humans , Complement C4/genetics , Mental Disorders/genetics , Phenotype
20.
Cereb Cortex ; 33(11): 6928-6942, 2023 05 24.
Article in English | MEDLINE | ID: mdl-36724055

ABSTRACT

The human brain is active at rest, and spontaneous fluctuations in functional MRI BOLD signals reveal an intrinsic functional architecture. During childhood and adolescence, functional networks undergo varying patterns of maturation, and measures of functional connectivity within and between networks differ as a function of age. However, many aspects of these developmental patterns (e.g. trajectory shape and directionality) remain unresolved. In the present study, we characterised age-related differences in within- and between-network resting-state functional connectivity (rsFC) and integration (i.e. participation coefficient, PC) in a large cross-sectional sample of children and adolescents (n = 628) aged 8-21 years from the Lifespan Human Connectome Project in Development. We found evidence for both linear and non-linear differences in cortical, subcortical, and cerebellar rsFC, as well as integration, that varied by age. Additionally, we found that sex moderated the relationship between age and putamen integration where males displayed significant age-related increases in putamen PC compared with females. Taken together, these results provide evidence for complex, non-linear differences in some brain systems during development.


Subject(s)
Brain , Connectome , Male , Child , Female , Humans , Adolescent , Cross-Sectional Studies , Brain/diagnostic imaging , Connectome/methods , Longevity , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...