Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells Transl Med ; 6(2): 434-443, 2017 02.
Article in English | MEDLINE | ID: mdl-28191777

ABSTRACT

Endogenous dermal stem cells (DSCs) reside in the adult hair follicle mesenchyme and can be isolated and grown in vitro as self-renewing colonies called skin-derived precursors (SKPs). Following transplantation into skin, SKPs can generate new dermis and reconstitute the dermal papilla and connective tissue sheath, suggesting they could have important therapeutic value for the treatment of skin disease (alopecia) or injury. Controlled cell culture processes must be developed to efficiently and safely generate sufficient stem cell numbers for clinical use. Compared with static culture, stirred-suspension bioreactors generated fivefold greater expansion of viable SKPs. SKPs from each condition were able to repopulate the dermal stem cell niche within established hair follicles. Both conditions were also capable of inducing de novo hair follicle formation and exhibited bipotency, reconstituting the dermal papilla and connective tissue sheath, although the efficiency was significantly reduced in bioreactor-expanded SKPs compared with static conditions. We conclude that automated bioreactor processing could be used to efficiently generate large numbers of autologous DSCs while maintaining their inherent regenerative function. Stem Cells Translational Medicine 2017;6:434-443.


Subject(s)
Bioreactors , Cell Culture Techniques/instrumentation , Cell Proliferation , Hair Follicle/cytology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Regenerative Medicine/instrumentation , Animals , Cell Separation , Cells, Cultured , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Kinetics , Male , Mesenchymal Stem Cells/metabolism , Mice, Inbred NOD , Mice, SCID , Phenotype , Rats, Sprague-Dawley , Rats, Transgenic , Regenerative Medicine/methods , Stem Cell Niche
2.
Biotechnol Bioeng ; 113(12): 2725-2738, 2016 12.
Article in English | MEDLINE | ID: mdl-27345530

ABSTRACT

Human skin-derived precursor cells (hSKPs) are multipotent adult stem cells found in the dermis of human skin. Incorporation of hSKPs into split-thickness skin grafts (STSGs), the current gold standard to treat severe burns or tissue resections, has been proposed as a treatment option to enhance skin wound healing and tissue function. For this approach to be clinically viable substantial quantities of hSKPs are required, which is the rate-limiting step, as only a few thousand hSKPs can be isolated from an autologous skin biopsy without causing donor site morbidity. In order to produce sufficient quantities of clinically viable cells, we have developed a bioprocess capable of expanding hSKPs as aggregates in stirred suspension bioreactors (SSBs). In this study, we found hSKPs from adult donors to expand significantly more (P < 0.05) at 60 rpm in SSBs than in static cultures. Furthermore, the utility of the SSBs, at 60 rpm is demonstrated by serial passaging of hSKPs from a small starting population, which can be isolated from an autologous skin biopsy without causing donor site morbidity. At 60 rpm, aggregates were markedly smaller and did not experience oxygen diffusional limitations, as seen in hSKPs cultured at 40 rpm. While hSKPs also grew at 80 rpm (0.74 Pa) and 100 rpm (1 Pa), they produced smaller aggregates due to high shear stress. The pH of the media in all the SSBs was closer to biological conditions and significantly different (P < 0.05) from static cultures, which recorded acidic pH conditions. The nutrient concentrations of the media in all the SSBs and static cultures did not drop below acceptable limits. Furthermore, there was no significant build-up of waste products to limit hSKP expansion in the SSBs. In addition, hSKP markers were maintained in the 60 rpm SSB as demonstrated by immunocytochemistry. This method of growing hSKPs in a batch culture at 60 rpm in a SSB represents an important first step in developing an automated bioprocess to produce substantial numbers of clinically viable hSKPs aimed at regenerating the dermis to improve healing of severe skin wounds. Biotechnol. Bioeng. 2016;113: 2725-2738. © 2016 Wiley Periodicals, Inc.


Subject(s)
Adult Stem Cells/cytology , Batch Cell Culture Techniques/instrumentation , Bioreactors , Multipotent Stem Cells/cytology , Skin/cytology , Adult , Adult Stem Cells/physiology , Aged , Batch Cell Culture Techniques/methods , Cell Proliferation/physiology , Cell Survival/physiology , Cells, Cultured , Equipment Design , Equipment Failure Analysis , Female , Humans , Male , Multipotent Stem Cells/physiology
3.
Biotechnol Prog ; 27(3): 811-23, 2011.
Article in English | MEDLINE | ID: mdl-21538971

ABSTRACT

Large numbers of cells will be required for successful embryonic stem cell (ESC)-based cellular therapies or drug discovery, thus raising the need to develop scaled-up bioprocesses for production of ESCs and their derived progeny. Traditionally, ESCs have been propagated in adherent cultures in static flasks on fibroblasts layers in serum-containing medium. Direct translation of two-dimensional flatbed cultures to large-scale production of the quantities of cells required for therapy simply by increasing the number of dishes or flasks is not practical or economical. Here, we describe successful scaled-up production of ESCs on microcarriers in a stirred culture system in a serum-free medium. Cells expanded on CultiSpher S, Cytodex 3, and Collagen microcarriers showed superior cell-fold expansions of 439, 193, and 68, respectively, without excessive agglomeration, compared with 27 in static culture. In addition, the ESCs maintained their pluripotency after long-term culture (28 days) in serum-free medium. This is the first time mESCs have been cultured on microcarriers without prior exposure to serum and/or fibroblasts, while also eliminating the excessive agglomeration plaguing earlier studies. These protocols provide an economical, practical, serum-free means for expanding ESCs in a stirred suspension bioprocess.


Subject(s)
Bioreactors/microbiology , Cell Proliferation , Embryonic Stem Cells/cytology , Animals , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Culture Media, Serum-Free , Mice , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL
...