Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(18)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34577358

ABSTRACT

The measurement of a wide temperature range in a scene requires hardware capable of high dynamic range imaging. We describe a novel near-infrared thermal imaging system operating at a wavelength of 940 nm based on a commercial photovoltaic mode high dynamic range camera and analyse its measurement uncertainty. The system is capable of measuring over an unprecedently wide temperature range; however, this comes at the cost of a reduced temperature resolution and increased uncertainty compared to a conventional CMOS camera operating in photodetective mode. Despite this, the photovoltaic mode thermal camera has an acceptable level of uncertainty for most thermal imaging applications with an NETD of 4-12 °C and a combined measurement uncertainty of approximately 1% K if a low pixel clock is used. We discuss the various sources of uncertainty and how they might be minimised to further improve the performance of the thermal camera. The thermal camera is a good choice for imaging low frame rate applications that have a wide inter-scene temperature range.

2.
J Imaging ; 7(8)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34460772

ABSTRACT

Recent advances in smartphone technologies have opened the door to the development of accessible, highly portable sensing tools capable of accurate and reliable data collection in a range of environmental settings. In this article, we introduce a low-cost smartphone-based hyperspectral imaging system that can convert a standard smartphone camera into a visible wavelength hyperspectral sensor for ca. £100. To the best of our knowledge, this represents the first smartphone capable of hyperspectral data collection without the need for extensive post processing. The Hyperspectral Smartphone's abilities are tested in a variety of environmental applications and its capabilities directly compared to the laboratory-based analogue from our previous research, as well as the wider existing literature. The Hyperspectral Smartphone is capable of accurate, laboratory- and field-based hyperspectral data collection, demonstrating the significant promise of both this device and smartphone-based hyperspectral imaging as a whole.

SELECTION OF CITATIONS
SEARCH DETAIL
...