Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetologia ; 66(3): 461-471, 2023 03.
Article in English | MEDLINE | ID: mdl-36316401

ABSTRACT

AIMS/HYPOTHESIS: We hypothesised that the insulin-sensitising effect of physical activity depends on the timing of the activity. Here, we examined cross-sectional associations of breaks in sedentary time and timing of physical activity with liver fat content and insulin resistance in a Dutch cohort. METHODS: In 775 participants of the Netherlands Epidemiology of Obesity (NEO) study, we assessed sedentary time, breaks in sedentary time and different intensities of physical activity using activity sensors, and liver fat content by magnetic resonance spectroscopy (n=256). Participants were categorised as being most active in the morning (06:00-12:00 hours), afternoon (12:00-18:00 hours) or evening (18:00-00:00 hours) or as engaging in moderate-to-vigorous-physical activity (MVPA) evenly distributed throughout the day. Most active in a certain time block was defined as spending the majority (%) of total daily MVPA in that block. We examined associations between sedentary time, breaks and timing of MVPA with liver fat content and HOMA-IR using linear regression analyses, adjusted for demographic and lifestyle factors including total body fat. Associations of timing of MVPA were additionally adjusted for total MVPA. RESULTS: The participants (42% men) had a mean (SD) age of 56 (4) years and a mean (SD) BMI of 26.2 (4.1) kg/m2. Total sedentary time was not associated with liver fat content or insulin resistance, whereas the amount of breaks in sedentary time was associated with higher liver fat content. Total MVPA (-5%/h [95% CI -10%/h, 0%/h]) and timing of MVPA were associated with reduced insulin resistance but not with liver fat content. Compared with participants who had an even distribution of MVPA throughout the day, insulin resistance was similar (-3% [95% CI -25%, 16%]) in those most active in morning, whereas it was reduced in participants who were most active in the afternoon (-18% [95% CI -33%, -2%]) or evening (-25% [95% CI -49%, -4%]). CONCLUSIONS/INTERPRETATION: The number of daily breaks in sedentary time was not associated with lower liver fat content or reduced insulin resistance. Moderate-to-vigorous activity in the afternoon or evening was associated with a reduction of up to 25% in insulin resistance. Further studies should assess whether timing of physical activity is also important for the occurrence of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Male , Humans , Middle Aged , Female , Diabetes Mellitus, Type 2/epidemiology , Cross-Sectional Studies , Exercise , Liver , Accelerometry
2.
Am J Epidemiol ; 191(5): 886-899, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35015809

ABSTRACT

Visceral adipose tissue (VAT) is a strong prognostic factor for cardiovascular disease and a potential target for cardiovascular risk stratification. Because VAT is difficult to measure in clinical practice, we estimated prediction models with predictors routinely measured in general practice and VAT as outcome using ridge regression in 2,501 middle-aged participants from the Netherlands Epidemiology of Obesity study, 2008-2012. Adding waist circumference and other anthropometric measurements on top of the routinely measured variables improved the optimism-adjusted R2 from 0.50 to 0.58 with a decrease in the root-mean-square error (RMSE) from 45.6 to 41.5 cm2 and with overall good calibration. Further addition of predominantly lipoprotein-related metabolites from the Nightingale platform did not improve the optimism-corrected R2 and RMSE. The models were externally validated in 370 participants from the Prospective Investigation of Vasculature in Uppsala Seniors (PIVUS, 2006-2009) and 1,901 participants from the Multi-Ethnic Study of Atherosclerosis (MESA, 2000-2007). Performance was comparable to the development setting in PIVUS (R2 = 0.63, RMSE = 42.4 cm2, calibration slope = 0.94) but lower in MESA (R2 = 0.44, RMSE = 60.7 cm2, calibration slope = 0.75). Our findings indicate that the estimation of VAT with routine clinical measurements can be substantially improved by incorporating waist circumference but not by metabolite measurements.


Subject(s)
Intra-Abdominal Fat , Obesity , Adipose Tissue , Body Mass Index , Humans , Metabolomics , Middle Aged , Obesity/epidemiology , Prospective Studies , Waist Circumference
3.
Int J Cardiovasc Imaging ; 38(1): 183-193, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34304318

ABSTRACT

Pulse wave velocity (PWV) assessed by magnetic resonance imaging (MRI) is a prognostic marker for cardiovascular events. Prediction modelling could enable indirect PWV assessment based on clinical and anthropometric data. The aim was to calculate estimated-PWV (ePWV) based on clinical and anthropometric measures using linear ridge regression as well as a Deep Neural Network (DNN) and to determine the cut-off which provides optimal discriminative performance between lower and higher PWV values. In total 2254 participants from the Netherlands Epidemiology of Obesity study were included (age 45-65 years, 51% male). Both a basic and expanded prediction model were developed. PWV was estimated using linear ridge regression and DNN. External validation was performed in 114 participants (age 30-70 years, 54% female). Performance was compared between models and estimation accuracy was evaluated by ROC-curves. A cut-off for optimal discriminative performance was determined using Youden's index. The basic ridge regression model provided an adjusted R2 of 0.33 and bias of < 0.001, the expanded model did not add predictive performance. Basic and expanded DNN models showed similar model performance. Optimal discriminative performance was found for PWV < 6.7 m/s. In external validation expanded ridge regression provided the best performance of the four models (adjusted R2: 0.29). All models showed good discriminative performance for PWV < 6.7 m/s (AUC range 0.81-0.89). ePWV showed good discriminative performance with regard to differentiating individuals with lower PWV values (< 6.7 m/s) from those with higher values, and could function as gatekeeper in selecting patients who benefit from further MRI-based PWV assessment.


Subject(s)
Pulse Wave Analysis , Vascular Stiffness , Adult , Aged , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Netherlands/epidemiology , Neural Networks, Computer , Obesity/epidemiology , Predictive Value of Tests
4.
Med Sci Sports Exerc ; 53(11): 2309-2317, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34081059

ABSTRACT

PURPOSE: It remains unclear to what extent habitual physical activity and sedentary time (ST) are associated with visceral fat and liver fat. We studied the substitution of ST with time spent physically active and total body fat (TBF), visceral adipose tissue (VAT), and hepatic triglyceride content (HTGC) in middle-age men and women. DESIGN: In this cross-sectional analysis of the Netherlands Epidemiology of Obesity study, physical activity was assessed in 228 participants using a combined accelerometer and heart rate monitor. TBF was assessed by the Tanita bioelectrical impedance, VAT by magnetic resonance imaging, and HTGC by proton-MR spectroscopy. Behavioral intensity distribution was categorized as ST, time spent in light physical activity (LPA), and moderate to vigorous physical activity (MVPA). To estimate the effect of replacing 30 min·d-1 of ST with 30 min·d-1 LPA or MVPA, we performed isotemporal substitution analyses, adjusted for sex, age, ethnicity, education, the Dutch Healthy Diet index, and smoking. RESULTS: Included participants (41% men) had a mean ± SD age of 56 ± 6 yr and spent 88 ± 56 min in MVPA and 9.0 ± 2.1 h of ST. Replacing 30 min·d-1 of ST with 30 min of MVPA was associated with 1.3% less TBF (95% confidence interval = -2.0 to -0.7), 7.8 cm2 less VAT (-11.6 to -4.0), and 0.89 times HTGC (0.82-0.97). Replacement with LPA was not associated with TBF (-0.03%; -0.5 to 0.4), VAT (-1.7 cm2; -4.4 to 0.9), or HTGC (0.98 times; 0.92-1.04). CONCLUSIONS: Reallocation of time spent sedentary with time spent in MVPA, but not LPA, was associated with less TBF, visceral fat, and liver fat. These findings contribute to the development of more specified guidelines on ST and physical activity.


Subject(s)
Adipose Tissue/anatomy & histology , Adiposity , Exercise , Intra-Abdominal Fat/anatomy & histology , Liver/anatomy & histology , Accelerometry , Adipose Tissue/diagnostic imaging , Aged , Cross-Sectional Studies , Electric Impedance , Electrocardiography, Ambulatory , Female , Humans , Intra-Abdominal Fat/diagnostic imaging , Liver/diagnostic imaging , Liver/metabolism , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Middle Aged , Triglycerides/metabolism
5.
Int J Obes (Lond) ; 45(7): 1510-1520, 2021 07.
Article in English | MEDLINE | ID: mdl-33935282

ABSTRACT

AIMS: To evaluate whether the association between plasma branched-chain amino acids (BCAA) and intrahepatic lipid (IHL) was affected by physical activity level. Furthermore, to investigate if a conventional exercise training program, a subcategory of physical activity, could lower plasma BCAA along with alterations in IHL content in patients with type 2 diabetes (T2DM) and people with nonalcoholic fatty liver (NAFL). METHODS: To investigate the effect of physical activity on the association between plasma BCAA and IHL content, linear regression analyses were performed in 1983 individuals from the Netherlands Epidemiology of Obesity (NEO) stratified by physical activity frequency. Furthermore, the effect of a 12-week supervised combined aerobic resistance-exercise program on plasma BCAA, insulin sensitivity (hyperinsulinemic-euglycemic clamp), and IHL (proton-magnetic resonance spectroscopy (1H-MRS)) was investigated in seven patients with T2DM, seven individuals with NAFL and seven BMI-matched control participants (CON). RESULTS: We observed positive associations between plasma valine, isoleucine and leucine level, and IHL content (1.29 (95% CI: 1.21, 1.38), 1.52 (95% CI: 1.43, 1.61), and 1.54 (95% CI: 1.44, 1.64) times IHL, respectively, per standard deviation of plasma amino acid level). Similar associations were observed in less active versus more active individuals. Exercise training did not change plasma BCAA levels among groups, but reduced IHL content in NAFL (from 11.6 ± 3.0% pre-exercise to 8.1 ± 2.0% post exercise, p < 0.05) and CON (from 2.4 ± 0.6% pre-exercise to 1.6 ± 1.4% post exercise, p < 0.05), and improved peripheral insulin sensitivity in NAFL as well by ~23% (p < 0.05). CONCLUSIONS: The association between plasma BCAA levels and IHL is not affected by physical activity level. Exercise training reduced IHL without affecting plasma BCAA levels in individuals with NAFL and CON. We conclude that exercise training-induced reduction in IHL content is not related to changes in plasma BCAA levels. TRIAL REGISTRATION: Trial registry number: NCT01317576.


Subject(s)
Amino Acids, Branched-Chain/blood , Exercise , Lipids/analysis , Liver , Obesity , Aged , Cross-Sectional Studies , Diabetes Mellitus, Type 2/metabolism , Exercise/physiology , Exercise/statistics & numerical data , Humans , Lipid Metabolism/physiology , Liver/diagnostic imaging , Liver/metabolism , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/blood , Obesity/epidemiology , Obesity/metabolism
6.
J Am Heart Assoc ; 8(9): e010810, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31017036

ABSTRACT

Background Identifying associations between serum metabolites and visceral adipose tissue ( VAT ) could provide novel biomarkers of VAT and insights into the pathogenesis of obesity-related diseases. We aimed to discover and replicate metabolites reflecting pathways related to VAT . Methods and Results Associations between fasting serum metabolites and VAT area (by computed tomography or magnetic resonance imaging) were assessed with cross-sectional linear regression of individual-level data from participants in MESA (Multi-Ethnic Study of Atherosclerosis; discovery, N=1103) and the NEO (Netherlands Epidemiology of Obesity) study (replication, N=2537). Untargeted 1H nuclear magnetic resonance metabolomics profiling of serum was performed in MESA, and metabolites were replicated in the NEO study using targeted 1H nuclear magnetic resonance spectroscopy. A total of 30 590 metabolomic spectral variables were evaluated. After adjustment for age, sex, race/ethnicity, socioeconomic status, smoking, physical activity, glucose/lipid-lowering medication, and body mass index, 2104 variables representing 24 nonlipid and 49 lipid/lipoprotein subclass metabolites remained significantly associated with VAT ( P=4.88×10-20-1.16×10-3). These included conventional metabolites, amino acids, acetylglycoproteins, intermediates of glucose and hepatic metabolism, organic acids, and subclasses of apolipoproteins, cholesterol, phospholipids, and triglycerides. Metabolites mapped to 31 biochemical pathways, including amino acid substrate use/metabolism and glycolysis/gluconeogenesis. In the replication cohort, acetylglycoproteins, branched-chain amino acids, lactate, glutamine (inversely), and atherogenic lipids remained associated with VAT ( P=1.90×10-35-8.46×10-7), with most associations remaining after additional adjustment for surrogates of VAT (glucose level, waist circumference, and serum triglycerides), reflecting novel independent associations. Conclusions We identified and replicated a metabolite panel associated with VAT in 2 community-based cohorts. These findings persisted after adjustment for body mass index and appear to define a metabolic signature of visceral adiposity.


Subject(s)
Intra-Abdominal Fat/metabolism , Metabolomics , Aged , Aged, 80 and over , Amino Acids/blood , Amino Acids, Branched-Chain/blood , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Female , Gluconeogenesis , Glutamine/blood , Glycolysis , Humans , Intra-Abdominal Fat/diagnostic imaging , Lactic Acid/blood , Linear Models , Magnetic Resonance Imaging , Male , Metabolic Networks and Pathways , Middle Aged , Organ Size , Proton Magnetic Resonance Spectroscopy , Tomography, X-Ray Computed , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...