Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Respir Res ; 23(1): 219, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36028826

ABSTRACT

BACKGROUND: Bronchoalveolar lavage (BAL) is a key tool in respiratory medicine for sampling the distal airways. BAL bile acids are putative biomarkers of pulmonary microaspiration, which is associated with poor outcomes after lung transplantation. Compared to BAL, large airway bronchial wash (LABW) samples the tracheobronchial space where bile acids may be measurable at more clinically relevant levels. We assessed whether LABW bile acids, compared to BAL bile acids, are more strongly associated with poor clinical outcomes in lung transplant recipients. METHODS: Concurrently obtained BAL and LABW at 3 months post-transplant from a retrospective cohort of 61 lung transplant recipients were analyzed for taurocholic acid (TCA), glycocholic acid (GCA), and cholic acid by mass spectrometry and 10 inflammatory proteins by multiplex immunoassay. Associations between bile acids with inflammatory proteins and acute lung allograft dysfunction were assessed using Spearman correlation and logistic regression, respectively. Time to chronic lung allograft dysfunction and death were evaluated using multivariable Cox proportional hazards and Kaplan-Meier methods. RESULTS: Most bile acids and inflammatory proteins were higher in LABW than in BAL. LABW bile acids correlated with inflammatory proteins within and between sample type. LABW TCA and GCA were associated with acute lung allograft dysfunction (OR = 1.368; 95%CI = 1.036-1.806; P = 0.027, OR = 1.064; 95%CI = 1.009-1.122; P = 0.022, respectively). No bile acids were associated with chronic lung allograft dysfunction. Adjusted for risk factors, LABW TCA and GCA predicted death (HR = 1.513; 95%CI = 1.014-2.256; P = 0.042, HR = 1.597; 95%CI = 1.078-2.366; P = 0.020, respectively). Patients with LABW TCA in the highest tertile had worse survival compared to all others. CONCLUSIONS: LABW bile acids are more strongly associated than BAL bile acids with inflammation, acute lung allograft dysfunction, and death in lung transplant recipients. Collection of LABW may be useful in the evaluation of microaspiration in lung transplantation and other respiratory diseases.


Subject(s)
Lung Transplantation , Transplant Recipients , Bile Acids and Salts , Biomarkers , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid , Cohort Studies , Humans , Lung , Retrospective Studies
2.
Eur Respir J ; 59(4)2022 04.
Article in English | MEDLINE | ID: mdl-34475226

ABSTRACT

BACKGROUND: Survival after lung transplantation (LTx) is hampered by uncontrolled inflammation and alloimmunity. Regulatory T-cells (Tregs) are being studied as a cellular therapy in solid organ transplantation. Whether these systemically administered Tregs can function at the appropriate location and time is an important concern. We hypothesised that in vitro-expanded recipient-derived Tregs can be delivered to donor lungs prior to LTx via ex vivo lung perfusion (EVLP), maintaining their immunomodulatory ability. METHODS: In a rat model, Wistar Kyoto (WKy) CD4+CD25high Tregs were expanded in vitro prior to EVLP. Expanded Tregs were administered to Fisher 344 (F344) donor lungs during EVLP; left lungs were transplanted into WKy recipients. Treg localisation and function post-transplant were assessed. In a proof-of-concept experiment, cryopreserved expanded human CD4+CD25+CD127low Tregs were thawed and injected into discarded human lungs during EVLP. RESULTS: Rat Tregs entered the lung parenchyma and retained suppressive function. Expanded Tregs had no adverse effect on donor lung physiology during EVLP; lung water as measured by wet-to-dry weight ratio was reduced by Treg therapy. The administered cells remained in the graft at 3 days post-transplant where they reduced activation of intra-graft effector CD4+ T-cells; these effects were diminished by day 7. Human Tregs entered the lung parenchyma during EVLP where they expressed key immunoregulatory molecules (CTLA4+, 4-1BB+, CD39+ and CD15s+). CONCLUSIONS: Pre-transplant Treg administration can inhibit alloimmunity within the lung allograft at early time points post-transplant. Our organ-directed approach has potential for clinical translation.


Subject(s)
Lung Transplantation , T-Lymphocytes, Regulatory , Animals , Lung , Lung Transplantation/adverse effects , Perfusion/adverse effects , Rats , Tissue Donors
3.
J Heart Lung Transplant ; 39(9): 934-944, 2020 09.
Article in English | MEDLINE | ID: mdl-32487471

ABSTRACT

BACKGROUND: Gastroesophageal reflux disease (GERD) is a risk factor for chronic lung allograft dysfunction. Bile acids-putative markers of gastric microaspiration-and inflammatory proteins in the bronchoalveolar lavage (BAL) have been associated with chronic lung allograft dysfunction, but their relationship with GERD remains unclear. Although GERD is thought to drive chronic microaspiration, the selection of patients for anti-reflux surgery lacks precision. This multicenter study aimed to test the association of BAL bile acids with GERD, lung inflammation, allograft function, and anti-reflux surgery. METHODS: We analyzed BAL obtained during the first post-transplant year from a retrospective cohort of patients with and without GERD, as well as BAL obtained before and after Nissen fundoplication anti-reflux surgery from a separate cohort. Levels of taurocholic acid (TCA), glycocholic acid, and cholic acid were measured using mass spectrometry. Protein markers of inflammation and injury were measured using multiplex assay and enzyme-linked immunosorbent assay. RESULTS: At 3 months after transplantation, TCA, IL-1ß, IL-12p70, and CCL5 were higher in the BAL of patients with GERD than in that of no-GERD controls. Elevated TCA and glycocholic acid were associated with concurrent acute lung allograft dysfunction and inflammatory proteins. The BAL obtained after anti-reflux surgery contained reduced TCA and inflammatory proteins compared with that obtained before anti-reflux surgery. CONCLUSIONS: Targeted monitoring of TCA and selected inflammatory proteins may be useful in lung transplant recipients with suspected reflux and microaspiration to support diagnosis and guide therapy. Patients with elevated biomarker levels may benefit most from anti-reflux surgery to reduce microaspiration and allograft inflammation.


Subject(s)
Bile Acids and Salts/metabolism , Bronchiolitis Obliterans/surgery , Bronchoalveolar Lavage Fluid/chemistry , Gastroesophageal Reflux/complications , Graft Rejection/metabolism , Lung Transplantation , Transplant Recipients , Adult , Aged , Biomarkers/metabolism , Bronchiolitis Obliterans/complications , Female , Follow-Up Studies , Gastroesophageal Reflux/metabolism , Graft Rejection/etiology , Humans , Male , Middle Aged , Retrospective Studies , Young Adult
4.
Transpl Int ; 32(9): 965-973, 2019 09.
Article in English | MEDLINE | ID: mdl-31002407

ABSTRACT

Chronic lung allograft dysfunction (CLAD) remains the leading cause of late death after lung transplantation. Epithelial injury is thought to be a key event in the pathogenesis of CLAD. M30 and M65 are fragments of cytokeratin-18 released specifically during epithelial cell apoptosis and total cell death, respectively. We investigated whether M30 and M65 levels in bronchoalveolar lavage (BAL) correlate with CLAD subtypes: restrictive allograft syndrome (RAS) versus bronchiolitis obliterans syndrome (BOS). BALs were obtained from 26 patients with established CLAD (10 RAS, 16 BOS) and 19 long-term CLAD-free controls. Samples with concurrent infection or acute rejection were excluded. Protein levels were measured by ELISA. Variables were compared using Kruskal-Wallis, Mann-Whitney U test and Chi-squared tests. Association of M30 and M65 levels with post-CLAD survival was assessed using a Cox PH models. M65 levels were significantly higher in RAS compared to BOS and long-term CLAD-free controls and correlated with worse post-CLAD survival. Lung epithelial cell death is enhanced in patients with RAS. Detection of BAL M65 may be used to differentiate CLAD subtypes and as a prognostic marker in patients with established CLAD. Understanding the role of epithelial cell death in CLAD pathogenesis may help identify new therapeutic targets to improve outcome.


Subject(s)
Keratin-18/metabolism , Lung Diseases/metabolism , Lung Transplantation , Peptide Fragments/metabolism , Postoperative Complications/metabolism , Adult , Biomarkers/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Cell Death , Epithelial Cells/metabolism , Female , Humans , Keratin-18/analysis , Lung Diseases/mortality , Male , Middle Aged , Ontario/epidemiology , Peptide Fragments/analysis , Postoperative Complications/mortality , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...