Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Complement Med Ther ; 23(1): 18, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36681810

ABSTRACT

BACKGROUND: Capsaicinoids, such as dihydrocapsaicin (DHC), exert the health-promoting effects of chili peppers on energy metabolism. The metabolic responses to capsaicinoids are primarily mediated through transient receptor potential cation channel subfamily V member 1 (TRPV1). However, the varying contributions of their metabolites to beneficial health outcomes remain unclear. 8-methyl nonanoic acid (8-MNA), a methyl-branched medium chain fatty acid (MCFA), is an in vivo degradation by-product of DHC. Since MCFAs have emerged as metabolic modulators in adipocytes, here we examined various cellular responses to 8-MNA in 3T3-L1 adipocytes. METHODS: The viability of 3T3-L1 adipocytes exposed to various concentrations of 8-MNA was assessed by the Calcein AM assay. Biochemical assays for lipid accumulation, AMP-activated protein kinase (AMPK) activity, lipolysis and glucose uptake were performed in 3T3-L1 adipocytes treated with 8-MNA during 48-h nutrient starvation or 5-day maturation. RESULTS: 8-MNA caused no impact on cell viability. During nutrient starvation, 8-MNA decreased lipid amounts in association with AMPK activation, a molecular event that suppresses lipogenic processes. Moreover, 3T3-L1 adipocytes that were treated with 8-MNA during 5-day maturation exhibited a reduced lipolytic response to isoproterenol and an increased glucose uptake when stimulated with insulin. CONCLUSIONS: These results suggest that 8-MNA derived from DHC modulates energy metabolism in adipocytes and also support the idea that the metabolic benefits of chili consumption are partly attributable to 8-MNA.


Subject(s)
AMP-Activated Protein Kinases , Adipocytes , Mice , Animals , 3T3-L1 Cells , AMP-Activated Protein Kinases/metabolism , Fatty Acids/pharmacology , Glucose/metabolism
2.
Biomed Pharmacother ; 154: 113521, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36007275

ABSTRACT

Capsaicin and dihydrocapsaicin (DHC) are major pungent capsaicinoids produced in chili peppers. Capsaicin has been previously shown to promote vascular health by increasing nitric oxide (NO) production and reducing inflammatory responses. While capsaicin has been extensively studied, whether DHC exerts cardiovascular benefits through similar mechanisms remains unclear. The current study aimed to investigate the direct effects of DHC on endothelial inflammation, NO release, and free radical scavenging properties. DHC at concentrations up to 50 µM did not affect cell viability, while concentrations of 100 and 500 µM of DHC led to endothelial cytotoxicity. Capsaicin decreased cell viability at concentration of 500 µM. To investigate the effects of capsaicinoids on endothelial activation, we first demonstrated that TNFα induced Ser536 phosphorylation of p65 NFκB, expressions of adhesion molecules, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1, and IL-6 production in primary human endothelial cells. These effects were robustly abrogated by DHC. Consistently, DHC treatment led to a marked reduction in TNFα-mediated monocyte adhesion to endothelial cells. Additionally, NO production was significantly induced by DHC and capsaicin compared to vehicle control. Similar to capsaicin and vitamin C, DHC scavenged DPPH (1,1-diphenyl-2-picrylhydrazyl) free radicals in vitro. Our present study highlights the benefits of DHC and capsaicin treatment on human endothelial cells and provides evidence to support cardiovascular benefits from capsicum consumption.


Subject(s)
Capsaicin , Capsicum , Antioxidants/pharmacology , Capsaicin/analogs & derivatives , Capsaicin/chemistry , Capsaicin/pharmacology , Capsicum/chemistry , Endothelial Cells/metabolism , Humans , Inflammation/drug therapy , Nitric Oxide , Tumor Necrosis Factor-alpha
3.
Mater Sci Eng C Mater Biol Appl ; 67: 285-293, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27287124

ABSTRACT

Surface modification of magnetic nanoparticle (MNP) with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) (PEO-b-PVDM) diblock copolymers and its application as recyclable magnetic nano-support for adsorption with antibody were reported herein. PEO-b-PVDM copolymers were first synthesized via a reversible addition-fragmentation chain-transfer (RAFT) polymerization using poly(ethylene oxide) chain-transfer agent as a macromolecular chain transfer agent to mediate the RAFT polymerization of VDM. They were then grafted on amino-functionalized MNP by coupling with some azlactone rings of the PVDM block to form magnetic nanoclusters with tunable cluster size. The nanocluster size could be tuned by adjusting the chain length of the PVDM block. The nanoclusters were successfully used as efficient and recyclable nano-supports for adsorption with anti-rabbit IgG antibody. They retained higher than 95% adsorption of the antibody during eight adsorption-separation-desorption cycles, indicating the potential feasibility in using this novel hybrid nanocluster as recyclable support in cell separation applications.


Subject(s)
Antibodies/chemistry , Cross-Linking Reagents/chemistry , Lactones/chemistry , Magnetics , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Polyvinyls/chemistry , Recycling , Adsorption , Antigens , Chromatography, Gel , Hydrodynamics , Hydrogen-Ion Concentration , Lactones/chemical synthesis , Nanoparticles/ultrastructure , Polyethylene Glycols/chemical synthesis , Polymerization , Polyvinyls/chemical synthesis , Proton Magnetic Resonance Spectroscopy , Solutions , Spectroscopy, Fourier Transform Infrared , Static Electricity , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...