Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22282543

ABSTRACT

BackgroundMonocytes and macrophages play a pivotal role in inflammation during acute SARS-CoV-2 infection. However, their contribution to the development of post-acute sequelae of SARS-CoV-2 infection (PASC) are not fully elucidated. MethodsA cross sectional study was conducted comparing plasma cytokine and monocyte levels among three groups: participants with pulmonary PASC (PPASC) with a reduced predicted diffusing capacity for carbon monoxide [DLCOc, <80%; (PG)]; fully recovered from SARS-CoV-2 with no residual symptoms (recovered group, RG); and negative for SARS-CoV-2 (negative group, NG). The expressions of cytokines were measured in plasma of study cohort by Luminex assay. The percentages and numbers of monocyte subsets (classical, intermediate, and non-classical monocytes) and monocyte activation (defined by CD169 expression) were analyzed using flow cytometry analysis of peripheral blood mononuclear cells. ResultsPlasma IL-1Ra levels were elevated but FGF levels were reduced in PG compared to NG. Circulating monocytes and three subsets were significantly higher in PG and RG compared to NG. PG and RG exhibited higher levels of CD169+ monocyte counts and higher CD169 expression was detected in intermediate and non-classical monocytes from RG and PG than that found in NG. Further correlation analysis with CD169+ monocyte subsets revealed that CD169+ intermediate monocytes negatively correlated with DLCOc%, and CD169+ non-classical monocytes positively correlated with IL-1, IL-1{beta}, MIP-1, Eotaxin, and IFN{gamma}. ConclusionThis study present evidence that COVID convalescents exhibit monocyte alteration beyond the acute COVID-19 infection period even in convalescents with no residual symptoms. These data provide further rational for determining the role of monocyte subsets in PPASC pathogenesis.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-513351

ABSTRACT

Low-density granulocytes (LDGs) are a distinct subset of neutrophils whose increased abundance is associated with the severity of COVID-19. However, the long-term effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on LDG levels and phenotypic alteration remain unexplored. Using participants naive to SARS-CoV-2 (NP), infected with SARS-CoV-2 with no residual symptoms (NRS), and infected with SARS-CoV-2 with chronic pulmonary symptoms (PPASC), we compared LDG levels and their phenotype by measuring the expression of markers for activation, maturation, and neutrophil extracellular trap (NET) formation using flow cytometry. The number of LDGs was significantly elevated in PPASC compared to NP. Individuals infected with SARS-CoV-2 (NRS and PPASC) demonstrated increased CD10+ and CD16HI subset counts of LDGs compared to NP group. Further characterization of LDGs demonstrated that LDGs from PPASC displayed higher NET forming ability and aggregation with platelets compared to LDGs from NP and NRS. Our data demonstrates that mature neutrophils with a heightened activation phenotype remain in circulation long after initial SARS-CoV-2 infection. Persistent elevation of markers for neutrophil activation and NET formation on LDGs, as well as an enhanced proclivity for platelet-neutrophil aggregation (PNA) formation in individuals with PPASC may be associated with the development of long-term pulmonary sequelae.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-508904

ABSTRACT

The hallmark of severe COVID-19 involves systemic cytokine storm and multi-organ failure including testicular injury and germ cell depletion. The ACE2 receptor is also expressed in the resident testicular cells however, SARS-CoV-2 infection and mechanisms of testicular injury are not fully understood. The testicular injury can likely result either from direct virus infection of resident cells or by exposure to systemic inflammatory mediators or virus antigens. We here characterized SARS-CoV-2 infection in different human testicular 2D and 3D models including primary Sertoli cells, Leydig cells, mixed seminiferous tubule cells (STC), and 3D human testicular organoids (HTO). Data shows that SARS-CoV-2 does not establish a productive infection in any testicular cell types. However, exposure of STC and HTO to inflammatory supernatant from infected airway epithelial cells and COVID-19 plasma depicted a significant decrease in cell viability and death of undifferentiated spermatogonia. Further, exposure to only SARS-CoV-2 envelope protein, but not Spike or nucleocapsid proteins led to cytopathic effects on testicular cells that was dependent on the TLR2 receptor. A similar trend was observed in the K18h-ACE2 mouse model which revealed gross pathology in the absence of virus replication in the testis. Collectively, data strongly indicates that the testicular injury is not due to direct infection of SARS-CoV-2 but more likely an indirect effect of exposure to systemic inflammation or SARS-CoV-2 antigens. Data also provide novel insights into the mechanism of testicular injury and could explain the clinical manifestation of testicular symptoms associated with severe COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL