Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Sci Food Agric ; 104(6): 3654-3664, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38158730

ABSTRACT

BACKGROUND: Hot-air drying is a popular method for preserving the production of jackfruit, but heat treatment damages its nutritional qualities. Cold plasma is one of the pretreatment methods used to preserve quality attributes of fruits before drying. In the present work, we studied the effect of dielectric barrier discharge (DBD) plasma on the drying characteristics, microstructure, and bioactive compounds of jackfruit slices with different pretreatment times (15, 30, 45, and 60 s), followed by hot-air drying at 50, 60, and 70 °C. A homemade DBD device was operated via three neon transformers. RESULTS: Optical emission spectrophotometry revealed the emitted spectra of the reactive species in DBD plasma, including the N2 second positive system, N2 first negative system, nitrogen ion, and hydroxyl radical. The results showed that the DBD plasma promoted moisture transfer and enhanced the drying rate, related to the changes in the surface microstructure of samples damaged by DBD plasma. The modified Overhults model was recommended for describing the drying characteristics of jackfruit slices. The contents of ascorbic acid, total phenolics, total flavonoids, total polysaccharides, and antioxidant activity in pretreated jackfruit slices were improved by 9.64%, 42.59%, 25.77%, 27.00%, and 23.13%, respectively. However, the levels of color and carotenoids were reduced. CONCLUSION: Thus, the bioactive compounds in dried jackfruit slices can be improved using the DBD plasma technique as a potential pretreatment method for the drying process. © 2023 Society of Chemical Industry.


Subject(s)
Artocarpus , Antioxidants/chemistry , Ascorbic Acid , Desiccation/methods , Phenols
2.
Heliyon ; 9(11): e22247, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38045136

ABSTRACT

Complex multilayer film structures were fabricated through a custom-built angular DC magnetron co-sputtering system. In this system, separate Cu, Al, and brass (Cu + Zn) targets were mounted on three magnetron guns, working in conjunction with a rotating substrate. This study aimed to compare the properties of films with intricate structures, which were sputtered onto glass slides and polypropylene substrates. The sputtering process was optimized using a Box-Behnken design, considering three variable operating conditions: substrate rotation speed, sputtering time, and sputtering voltage. The Analysis of Variance (ANOVA) results for film thickness and roughness, sputtered with three different materials onto glass slides and polypropylene (PP) substrates, indicated that all three independent variables significantly influenced the optimum response, with P-values less than 0.05 (<α = 0.05). The optimal conditions for maximizing the thickness and roughness of the sputtered film on PP substrates differed from those obtained for the thin-film properties of the sputtered film on glass slide substrates. Top-view images of the surface morphology revealed a dense and granular structure for the film deposited on the glass slide, whereas some grooves between the grains and fractures were observed in the film on the PP substrate. Additionally, it was evident that these sputtered multilayer films exhibited a complex structure, as reflected in the uniform and homogeneous distribution of Cu, Al, and Zn atoms on both glass slides and PP substrates.

3.
Foods ; 12(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38137190

ABSTRACT

Water, soil, and food products contain pesticide residues. These residues result from excessive pesticides use, motivated by the fact that agricultural productivity can be increased by the use of these pesticides. The accumulation of these residues in the body can cause health problems, leading to food safety concerns. Cold plasma technology has been successfully employed in various applications, such as seed germination, bacterial inactivation, wound disinfection, surface sterilization, and pesticide degradation. In recent years, researchers have increasingly explored the effectiveness of cold plasma technology in the degradation of pesticide residues. Most studies have shown promising outcomes, encouraging further research and scaling-up for commercialization. This review summarizes the use of cold plasma as an emerging technology for pesticide degradation in terms of the plasma system and configuration. It also outlines the key findings in this area. The most frequently adopted plasma systems for each application are identified, and the mechanisms underlying pesticide degradation using cold plasma technology are discussed. The possible factors influencing pesticide degradation efficiency, challenges in research, and future trends are also discussed. This review demonstrates that despite the nascent nature of the technology, the use of cold plasma shows considerable potential in regards to pesticide residue degradation, particularly in food applications.

4.
Polymers (Basel) ; 15(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37299357

ABSTRACT

The wound-healing process can be disrupted at any stage due to various internal and external factors. The inflammatory stage of the process plays a vital role in determining the outcome of the wound. Prolonged inflammation due to bacterial infection can lead to tissue damage, slow healing, and complications. Wound dressings made using materials such as poly (vinyl alcohol) (PVA), chitosan (CS), and poly (ethylene glycol) (PEG) with Mangifera extract (ME) added can help reduce infection and inflammation, creating a conducive environment for faster healing. However, creating the electrospun membrane is challenging due to balancing various forces such as rheological behavior, conductivity, and surface tension. To improve the electrospinnability of the polymer solution, an atmospheric pressure plasma jet can induce chemistry in the solution and increase the polarity of the solvent. Thus, this research aims to investigate the effect of plasma treatment on PVA, CS, and PEG polymer solutions and fabricate ME wound dressing via electrospinning. The results indicated that increasing plasma treatment time increased the viscosity of the polymer solution, from 269 mPa∙to 331 mPa∙s after 60 min, and led to an increase in conductivity from 298 mS/cm to 330 mS/cm and an increase in nanofiber diameter from 90 ± 40 nm to 109 ± 49 nm. Incorporating 1% mangiferin extract into an electrospun nanofiber membrane has been found to increase the inhibition rates of Escherichia coli and Staphylococcus aureus by 29.2% and 61.2%, respectively. Additionally, the fiber diameter decreases when compared with the electrospun nanofiber membrane without ME. Our findings demonstrate that electrospun nanofiber membrane with ME has anti-infective properties and can promote faster wound healing.

5.
RSC Adv ; 13(21): 14078-14088, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37197673

ABSTRACT

The study aimed to investigate the effects of two different plasma systems, including pinhole plasma jet and gliding arc (GA) plasma, for the degradation of herbicide, diuron, in plasma activated solutions (PAS). In the GA plasma system, air was used to generate plasma, however, Ar, oxygen and nitrogen at different gas compositions were compared in the pinhole plasma jet system. The Taguchi design model was used to study the effects of gas compositions. Results revealed that the pinhole plasma jet system was able to degrade over 50% of the diuron in 60 minutes. The optimal plasma generation condition for the highest degradation of diuron used pure Ar gas. The highest degradation percentage of herbicide in PAS corresponded to the lowest hydrogen peroxide (H2O2) content, nitrite concentration and electrical conductivity (EC) of the PAS. The diuron degradation products were identified as 3,4-dichloro-benzenamine, 1-chloro-3-isocyanato-benzene and 1-chloro-4-isocyanato-benzene via gas chromatography-mass spectrometry (GC-MS). The GA plasma system was not adequate for the degradation of herbicide in PAS.

6.
Sci Rep ; 13(1): 2836, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36801899

ABSTRACT

The Pradu Hang Dam chicken, a Thai Native Chicken (TNCs) breed, plays an important role in many regions of Thailand because of its chewiness. However, there are some challenges with Thai Native Chicken, such as low production and slow growth rates. Therefore, this research investigates the efficiency of cold plasma technology in enhancing the production and growth rates of TNCs. First, this paper presents the embryonic development and hatch of fertile (HoF) values of treated fertilized eggs. Chicken performance indices, such as feed intake, average daily gain (ADG), feed conversion ratio (FCR), and serum growth hormone measurement, were calculated to assess chicken development. Furthermore, the potential of cost reduction was evaluated by calculating return over feed cost (ROFC). Finally, the quality aspects of chicken breast meat, including color, pH value, weight loss, cooking loss, shear force, and texture profile analysis, were investigated to evaluate cold plasma technology's impact on chicken meat. The results demonstrated that the production rate of male Pradu Hang Dam chickens (53.20%) was higher than females (46.80%). Moreover, cold plasma technology did not significantly affect chicken meat quality. According to the average return over feed cost calculation, the livestock industry could reduce feeding costs by approximately 17.42% in male chickens. Therefore, cold plasma technology is beneficial to the poultry industry to improve production and growth rates and reduce costs while being safe and environmentally friendly.


Subject(s)
Chickens , Plasma Gases , Female , Animals , Male , Meat/analysis , Poultry , Eggs
7.
Foods ; 11(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36140988

ABSTRACT

Plasma activated water (PAW) generated from pinhole plasma jet using gas mixtures of argon (Ar) and 2% oxygen (O2) was evaluated for pesticide degradation and microorganism decontamination (i.e., Escherichia coli and Colletotrichum gloeosporioides) in chili (Capsicum annuum L.). A flow rate of 10 L/min produced the highest concentration of hydrogen peroxide (H2O2) at 369 mg/L. Results showed that PAW treatment for 30 min and 60 min effectively degrades carbendazim and chlorpyrifos by about 57% and 54% in solution, respectively. In chili, carbendazim and chlorpyrifos were also decreased, to a major extent, by 80% and 65% after PAW treatment for 30 min and 60 min, respectively. E. coli populations were reduced by 1.18 Log CFU/mL and 2.8 Log CFU/g with PAW treatment for 60 min in suspension and chili, respectively. Moreover, 100% of inhibition of fungal spore germination was achieved with PAW treatment. Additionally, PAW treatment demonstrated significantly higher efficiency (p < 0.05) in controlling Anthracnose in chili by about 83% compared to other treatments.

8.
Polymers (Basel) ; 14(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36145941

ABSTRACT

Sulfur hexafluoride (SF6) plasma at different pressures, powers, and times was used to treat Kraft paper (KP) to enhance its water resistance. The KP was treated with SF6 plasma from 20-300 mTorr of pressure at powers from 25-75 Watts and treatment times from 1-30 min at 13.56 MHz. The prepared papers were characterized by contact angle measurement and water absorption. The selected optimum condition for the plasma-treated KP was 200 mTorr at 50 Watts for 5 min. Advancement with the change in treatment times (3, 5, and 7 min) on the physical and mechanical properties, water resistance, and morphology of KP with SF6 plasma at 200 mTorr and 50 Watts was evaluated. The changes in the chemical compositions of the plasma-treated papers were analyzed with an XPS analysis. The treatment times of 0, 3, 5, and 7 min revealed fluorine/carbon (F/C) atomic concentration percentages at 0.00/72.70, 40.48/40.97, 40.18/37.95, and 45.72/39.48, respectively. The XPS spectra showed three newly raised peaks at 289.7~289.8, 291.5~291.7, and 293.4~293.6 eV in the 3, 5, and 7 min plasma-treated KPs belonging to the CF, CF2, and CF3 moieties. The 5 min plasma-treated paper promoted a better interaction between the SF6 plasma and the paper yielded by the F atoms. As the treatment time for the treated KPs increased, the contact angle, water absorption time, and Cobb test values increased. However, the thickness and tensile strength did not show remarkable changes. The SEM images revealed that, as the treatment time increased, the surface roughness of the plasma-treated KPs also increased, leading to improved water resistance properties. Overall, the SF6 plasma treatment modified the surface at the nano-layer range, creating super-hydrophobicity surfaces.

9.
Sci Rep ; 10(1): 1559, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32005860

ABSTRACT

In general, the poultry industry uses 0.5-1 ppm chlorine solution in the meat sanitization process. However, chlorine can react with organic material and produce halogenated organic compounds, notably chloroform, which causes bladder and rectal cancer in humans. For this reason, many industries try to avoid chlorine. This study investigated the efficacy of ultrasound and plasma-activated water (PAW) on the inactivation of Escherichia coli and Staphylococcus aureus in chicken muscle, rough skin, and smooth skin. Samples inoculated with bacteria suspension were treated by ultrasound alone and PAW-ultrasound. The Taguchi method and desirability function approach were used for the experimental design and optimization. Combined ultrasound and PAW inactivated up to 1.33 log CFU/ml of E. coli K12 and 0.83 log CFU/ml of S. aureus at a sample thickness of 4 mm, at 40 °C for 60 min, while PAW alone only reduced E. coli K12 by 0.46 log CFU/ml and S. aureus by 0.33 log CFU/ml under the same condition. The muscle topography showed a porous structure, which facilitated the penetration of PAW. The color measurements of muscle treated with ultrasound and PAW-ultrasound were dramatically different from the untreated sample, as also perceived by the sensory evaluation panel. Therefore, the synergistic interaction of combined PAW-ultrasound could be used to enhance microbial inactivation in meat.


Subject(s)
Escherichia coli Infections/prevention & control , Escherichia coli O157/physiology , Food Contamination/prevention & control , Staphylococcal Infections/prevention & control , Staphylococcus aureus/physiology , Animals , Anti-Bacterial Agents , Chickens , Colony Count, Microbial , Food Handling , Food Microbiology , Humans , Meat , Plasma Gases , Skin , Ultrasonic Waves , Water
10.
Heliyon ; 5(9): e02455, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31687557

ABSTRACT

A compact low-temperature plasma jet device was developed to use ambient air as plasma gas. The device was driven by a 2.52-kV high-voltage direct-current pulse in a burst mode, with a repetition rate of 2 kHz. The maximum plasma discharge current was 3.5 A, with an approximately 10 ns full-width half-maximum. Nitric oxide, hydroxyl radical, atomic oxygen, ozone, and hydrogen peroxide-important reactive oxygen and nitrogen species (RONS)-were mainly produced. The amount of plasma-generated RONS can be controlled by varying the pulse-modulation factors. After optimization, the plasma plume length was approximately 5 mm and the treatment temperature was less than 40 °C. The preliminary bactericidal effects were tested on Staphylococcus aureus, Pseudomonas aeruginosa, and methicillin-resistant S. aureus (MRSA), and their biofilms. The results showed that the plasma can effectively inactivate S. aureus, P. aeruginosa, and MRSA in both time- and pulse-dependent manner. Thus, this produced plasma device proved to be an efficient tool for inactivating deteriorating bacteria. Further versatile utilization of this portable plasma generator is also promising.

11.
Food Chem ; 289: 328-339, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-30955620

ABSTRACT

The changes in the bioactive phytochemicals of six cultivars of Thai germinated brown rice (GBR) were monitored in parallel to those of cold plasma-treated GBR (PGBR). After treatment with the optimal plasma conditions, the germination percentage, root length, and seedling height measurements of the most sensitive rice cultivar increased by 84%, 57%, and 69%, respectively. For all of the rice cultivars, there were no significant differences in the antioxidant activities of the GBRs and PGBRs. Conversely, higher contents of γ-oryzanols were observed in the PGBR group than in the GBR group during the 2-day germination period. Certain cultivars in the PGBR group reached their maximum values for total phenolic compounds, total vitamin E, certain simple phenolics, phytosterols, triterpenoids, and anthocyanins one day earlier than the same values for GBR. In contrast, the concentrations of 2-acetyl-1-pyrroline in both the GBR and PGBR samples were reduced significantly with increased germination time.


Subject(s)
Oryza/chemistry , Phytochemicals/analysis , Plasma Gases , Anthocyanins/analysis , Antioxidants/chemistry , Chromatography, High Pressure Liquid , Germination , Oryza/growth & development , Oryza/metabolism , Phenols/analysis , Phytochemicals/chemistry , Phytosterols/analysis , Plant Extracts/chemistry , Pyrroles/analysis , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism , Tandem Mass Spectrometry , Thailand
12.
Biol Trace Elem Res ; 192(2): 330-335, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30847766

ABSTRACT

At present, Thailand uses medicinal plants to treat various diseases. Alternative medicine utilizes Gymnema inodorum Lour for antipyretic and anti-allergic purposes. There are also other research studies to treat diabetes mellitus, coronary artery disease, cataract, rheumatoid arthritis, gout, liver cancer, and stomach cancer. This study used particle-induced X-ray emission (PIXE) technique to analyze the elements in this plant. The advantage of this technique over other methods is the multi-elemental analysis and high sensitivity. The objective of this study was to determine the elemental compositions and to develop new standard methods for analyzing plant elemental compositions in Thailand. A 2-MeV proton beam was used to identify and characterize major and minor elements namely Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, and Zn in Gymnema Inodorum Lour. Results have shown that these elements are present in varying concentrations in the selected parts: roots, stems, and leaves. The data of elemental analysis, applied in recommended quantities that are harmful to the body, describe the relationship between elements and efficacy of this plant in alternative medicine.


Subject(s)
Gymnema/chemistry , Trace Elements/analysis , Particle Size , Spectrometry, X-Ray Emission , Surface Properties
13.
Acta Trop ; 176: 173-178, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28802553

ABSTRACT

Non-thermal plasma has been used in many medical applications, including treatment of living cells, blood coagulation, wound healing, and sterilization. The process uses an environmentally friendly gas (e.g., argon, helium, oxygen, nitrogen, or hydrogen) to destroy bacteria cells with no serious adverse effect on humans or animals. However, information on the effect of argon plasma on blow fly eggs is lacking. In this study, we explored the ability of cold argon plasma to destroy the eggs of the Australian sheep blow fly, Lucilia cuprina (Wiedemann, 1830); its larvae are a myiasis-producing agent in both human and animals. We tested the effect of cold argon plasma exposure for 1, 2, 3 and 5min on L. cuprina eggs. Since the temperature of cold Ar plasma is around 30°C, to clarify the effect of temperature on the fly eggs, hot air from an electric dryer was tested for comparison. Cold argon plasma exposure in eggs significantly reduced the survival rates of second instar larvae at all exposures tested; the effects were time dependent, with a stronger effect at longer exposure (32% survival rate after a 1-min treatment; 20%, 2min; 20%, 3min; and 6%, 5min), compared to the control (86%). No significant differences were observed in larval survival rates from eggs treated with hot air (80-84%, after 1- to 5-min treatments) versus the control (86%). These results were supported by observing the treated eggshells under a scanning electron microscope (SEM), we found noticeable aberrations only in the plasma treated groups. The emission spectrum of the argon gas discharge revealed emission lines of hydroxyl radicals at 309.1nm; these may cause the deterioration of the treated L. cuprina eggs. Our results have shown the possibility of using cold argon plasma in medical applications, in particular treating myiasis wounds.


Subject(s)
Argon/administration & dosage , Cold Temperature , Diptera/drug effects , Insecticides/administration & dosage , Plasma Gases/administration & dosage , Animals , Australia , Humans , Sheep
14.
Parasitol Res ; 116(5): 1581-1589, 2017 May.
Article in English | MEDLINE | ID: mdl-28361272

ABSTRACT

Maggot debridement therapy (MDT) is an application of sterile laboratory-reared blow fly larvae to remove necrotic tissue and disinfect wounds for medical conditions. For effective application, the blow fly larvae used in the wound treatment are required to be in aseptic condition. Here, we report the results of a detailed assessment of bacteria and fungi isolated from the eggs of two blow fly species, Chrysomya megacephala (F.) and Lucilia cuprina (Wiedemann) before and after sterilization by disinfectants Chlorhex-C, povidone-iodine, and sodium hypochlorite. We also assess the survival ability of larvae and their sterility after the cleansing process. The results indicate that the isolated microorganisms from the control group of both the species consisted of 10 species of gram-positive bacteria, 21 species of gram-negative bacteria, and 4 species of yeast. As for sterility testing, the eggs and the larvae of C. megacephala were found to have been completely sterilized after being subjected to thioglycollate medium for 5 days, leading to aseptic larvae. By contrast, some microorganisms from the bacterial culture were still detected in the L. cuprina larvae treated with Chlorhex-C and povidone-iodine. The survival ability of the larvae in both the species was not significantly different between the treated and the control groups. Due to its high disinfection efficacy in destroying microorganisms in both the blow fly eggs, sodium hypochlorite is recommended for preparing sterile larvae before using MDT.


Subject(s)
Bacteria/drug effects , Debridement/methods , Diptera/microbiology , Disinfectants/pharmacology , Larva/microbiology , Sterilization/methods , Animals , Chlorhexidine/pharmacology , Humans , Ovum/microbiology , Povidone-Iodine/pharmacology , Sodium Hypochlorite/pharmacology
15.
Int J Low Extrem Wounds ; 15(4): 313-319, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27581113

ABSTRACT

Pressure ulcers are difficult to treat. Recent reports of low-temperature atmospheric-pressure plasma (LTAPP) indicated its safe and effectiveness in chronic wound care management. It has been shown both in vitro and vivo studies that LTAPP not only helps facilitate wound healing but also has antimicrobial efficacy due to its composition of ion and electron, free radicals, and ultraviolet ray. We studied the beneficial effect of LTAPP specifically on pressure ulcers. In a prospective randomized study, 50 patients with pressure ulcers were divided into 2 groups: Control group received standard wound care and the study group was treated with LTAPP once every week for 8 consecutive weeks in addition to standard wound care. We found that the group treated with LTAPP had significantly better PUSH (Pressure Ulcer Scale for Healing) scores and exudate amount after 1 week of treatment. There was also a reduction in bacterial load after 1 treatment regardless of the species of bacteria identified.


Subject(s)
Atmospheric Pressure , Pressure Ulcer/therapy , Wound Healing , Anti-Bacterial Agents , Bacterial Load , Humans , Plasma , Prospective Studies , Temperature
16.
Cytotechnology ; 65(1): 119-34, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22760551

ABSTRACT

Wharton's jelly mesenchymal stem cells (WJMSCs) are important alternative source of pluripotent cells for several therapeutic purposes. Understanding of adhesion properties of such cells is necessary to regulate the attachment, growth and proliferation on targeted culture surfaces. BCP-K1, a line of WJMSCs, and polystyrene (PS) culture dishes were used as membrane samples. A 13.56 MHz inductively coupled discharge plasma reactor with a mixture of N-containing gas and noble gas was used. This was expected to introduce the more hydrophilic groups on PS surface and enhance the cell adhesion. The plasma-treated PS dishes with the mixed gas of N(2) + He at 50 W and NH(3) + He at 100 W were reactive towards BCP-K1. Cellular adhesion and proliferation was significantly twice as efficient on the treated surfaces than on PS dishes. BCP-K1 also secreted more focal adhesion kinase to adhere and proliferate when cultured on N(2)-treated PS dishes than on the NH(3)-treated PS dishes. Stable stemness markers were detected, including CD105, CD9 and SSEA-4, expressed on BCP-K1 growing on the modified PS dish surfaces, during 7 days of culturing. The presence of -NH(2) groups on the PS dish surface were revealed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. A large amount of oxygen- and nitrogen-containing functional groups, up to 9.0 %, were introduced by NH(3) plasma and N(2) plasma. The functional groups introduced on to the PS surfaces were clearly the key factors which enhanced WJMSCs attachment and stemness stability.

17.
Dent Mater J ; 28(6): 686-92, 2009 Nov.
Article in English | MEDLINE | ID: mdl-20019419

ABSTRACT

The aim of this study was to evaluate the effects of plasma treatment on adhesion between fiber-reinforced posts and a composite core material. Two types of posts, methacrylate-based (FRC Postec) and epoxy resin-based (DT Light-Post), were treated with oxygen plasma (O(2)), argon plasma (Ar), nitrogen plasma (N(2)), or helium mixed with nitrogen plasma (He+N(2)) using a radio-frequency generator before bonding to a methacrylate-based composite. Pull-out tests were performed using a universal testing machine. Surface roughness of each group was evaluated using a profilometer. On tensile-shear bond strength, statistical analysis revealed that the type of post, type of plasma treatment, and their interaction significantly influenced the results (p<0.05). Tukey's test revealed significant differences in tensile-shear bond strength between the control and other plasma treatment groups (p<0.05). On surface roughness, Tukey's test revealed significant differences between the control group and the Ar group (p<0.05) with DT Light Post. Plasma treatment appeared to increase the tensile-shear bond strength between post and composite.


Subject(s)
Composite Resins/chemistry , Dental Bonding/methods , Dental Materials/chemistry , Post and Core Technique/instrumentation , Argon/chemistry , Dental Prosthesis Design , Dental Stress Analysis/instrumentation , Epoxy Resins/chemistry , Glass/chemistry , Helium/chemistry , Humans , Materials Testing , Methacrylates/chemistry , Nitrogen/chemistry , Oxygen/chemistry , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Polyurethanes/chemistry , Quartz/chemistry , Radio Waves , Shear Strength , Stress, Mechanical , Surface Properties , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...