Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 17(1): 13, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38185634

ABSTRACT

BACKGROUND: Intestinal parasitic infections can harm health by causing malnutrition, anemia, impaired growth and cognitive development, and alterations in microbiota composition and immune responses. Therefore, it is crucial to examine stool samples to diagnose parasitic infections. However, the traditional microscopic detection method is time-consuming, labor-intensive, and dependent on the expertise and training of microscopists. Hence, there is a need for a low-complexity, high-throughput, and cost-effective alternative to labor-intensive microscopic examinations. METHODS: This study aimed to compare the performance of a fully automatic digital feces analyzer, Orienter Model FA280 (People's Republic of China) with that of the formalin-ethyl acetate concentration technique (FECT). We assessed and compared the agreement between the FA280 and the FECT for parasite detection and species identification in stool samples. The first part of the study analyzed 200 fresh stool samples for parasite detection using the FECT and FA280. With the FA280, the automatic feces analyzer performed the testing, and the digital microscope images were uploaded and automatically evaluated using an artificial intelligence (AI) program. Additionally, a skilled medical technologist conducted a user audit of the FA280 findings. The second set of samples comprised 800 preserved stool samples (preserved in 10% formalin). These samples were examined for parasites using the FECT and FA280 with a user audit. RESULTS: For the first set of stool samples, there was no statistically significant difference in the pairwise agreements between the FECT and the FA280 with a user audit (exact binomial test, P = 1). However, there were statistically significant differences between the pairwise agreements for the FECT and the FA280 with the AI report (McNemar's test, P < 0.001). The agreement for the species identification of parasites between the FA280 with AI report and FECT showed fair agreement (overall agreement = 75.5%, kappa [κ] = 0.367, 95% CI 0.248-0.486). On the other hand, the user audit for the FA280 and FECT showed perfect agreement (overall agreement = 100%, κ = 1.00, 95% CI 1.00-1.00). For the second set of samples, the FECT detected significantly more positive samples for parasites than the FA280 with a user audit (McNemar's test, P < 0.001). The disparity in results may be attributed to the FECT using significantly larger stool samples than those used by the FA280. The larger sample size used by the FECT potentially contributed to the higher parasite detection rate. Regarding species identification, there was strong agreement between the FECT and the FA280 with a user audit for helminths (κ = 0.857, 95% CI 0.82-0.894). Similarly, there was perfect agreement for the species identification of protozoa between the FECT and the FA280 with user audit (κ = 1.00, 95% CI 1.00-1.00). CONCLUSIONS: Although the FA280 has advantages in terms of simplicity, shorter performance time, and reduced contamination in the laboratory, there are some limitations to consider. These include a higher cost per sample testing and a lower sensitivity compared to the FECT. However, the FA280 enables rapid, convenient, and safe stool examination of parasitic infections.


Subject(s)
Parasites , Parasitic Diseases , Animals , Artificial Intelligence , Feces , Formaldehyde
2.
Pathogens ; 12(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37375452

ABSTRACT

Angiostrongylus cantonensis is the major etiological nematode parasite causing eosinophilic meningitis and/or eosinophilic meningoencephalitis in humans. The rapid global spread of Angiostrongylus cantonensis and the emerging occurrence of the infection have exposed the shortcomings of traditional/conventional diagnostics. This has spurred efforts to develop faster, simpler and more scalable platforms that can be decentralized for point-of-need laboratory testing. By far, the point-of-care immunoassays such as the lateral flow assay (LFA) are the best-placed. In this work, a LFA in the form of an immunochromatographic test device (designated AcAgQuickDx), based on the detection of a circulating Angiostrongylus cantonensis-derived antigen, was established using anti-31 kDa Angiostrongylus cantonensis antibody as the capture reagent and anti-Angiostrongylus cantonensis polyclonal antibody as the indicator reagent. The AcAgQuickDx was evaluated for its diagnostic potential with a total of 20 cerebrospinal fluids (CSF) and 105 serum samples from patients with angiostrongyliasis and other clinically related parasitic diseases, as well as serum samples from normal healthy subjects. Three of the ten CSF samples from serologically confirmed angiostrongyliasis cases and two of the five suspected cases with negative anti-Angiostrongylus cantonensis antibodies showed a positive AcAgQuickDx reaction. Likewise, the AcAgQuickDx was able to detect Angiostrongylus cantonensis specific antigens in four serum samples of the 27 serologically confirmed angiostrongyliasis cases. No positive reaction by AcAgQuickDx was observed in any of the CSF (n = 5) and serum (n = 43) samples with other parasitic infections, or the normal healthy controls (n = 35). The AcAgQuickDx enabled the rapid detection of active/acute Angiostrongylus cantonensis infection. It is easy to use, can be transported at room temperature and does not require refrigeration for long-term stability over a wide range of climate. It can supplement existing diagnostic tests for neuroangiostrongyliasis under clinical or field environments, particularly in remote and resource-poor areas.

3.
Vet Parasitol Reg Stud Reports ; 33: 100752, 2022 08.
Article in English | MEDLINE | ID: mdl-35820723

ABSTRACT

Ascaris roundworms are of public health and socio-economic importance worldwide. They are conventionally attributed to two taxa - A. lumbricoides infecting principally human and A. suum infecting principally pig. Phylogenomic analysis has revealed that Ascaris worms from both human and pig are represented in Clades A and B. A recent study indicates that the Ascaris worms from human and pig in Thailand belong to Clade A. We examined adult Ascaris worms from human and pig in Thailand by means of the partial sequences of three mitochondrial genes (cox1, cox2 and nad1) and concatenation of these genes. Phylogenomic analysis indicates that two isolates (H1,H2) of A. lumbricoides from human belonged to Clade B; one isolate (H3) belonged to Clade A (based on cox1, cox2 and concatenated sequences) or as an outlier to Clades A and B (based on nad1 sequences). All the eight isolates of A. suum from pig clustered in Clade A. The partial nad1 and the concatenated sequences revealed two lineages of A. suum isolates which were distinct from the two A. lumbricoides isolates of Clade B. It is evident that greater genetic diversity, and a more robust phylogeny, could be uncovered by the application of multiple genes. In sum, the present study reveals the presence in Thailand of A. lumbricoides from human in Clades A and B which necessitates appropriate treatment and control measures; Clades A and B have been reported to contain haplotypes of Ascaris worms from both human and pig in other parts of the world. A country wide study is needed to elucidate the identity, distribution, prevalence, cross transmission, genetic diversity and phylogeny of the Ascaris worms in Thailand.


Subject(s)
Ascariasis , Ascaris suum , Animals , Ascariasis/epidemiology , Ascariasis/veterinary , Ascaris/genetics , Ascaris lumbricoides/genetics , Ascaris suum/genetics , Cyclooxygenase 2/genetics , Genetic Variation , Humans , Swine , Thailand/epidemiology
4.
Acta Trop ; 171: 141-145, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28347653

ABSTRACT

The rat lungworm Angiostrongylus cantonensis is a food-borne zoonotic parasite of public health importance worldwide. It is the primary etiologic agent of eosinophilic meningitis and eosinophilic meningoencephalitis in humans in many countries. It is highly endemic in Thailand especially in the northeast region. In this study, A. cantonensis adult worms recovered from the lungs of wild rats in different geographical regions/provinces in Thailand were used to determine their haplotype by means of the mitochondrial partial cytochrome c oxidase subunit I (COI) gene sequence. The results revealed three additional COI haplotypes of A. cantonensis. The geographical isolates of A. cantonensis from Thailand and other countries formed a monophyletic clade distinct from the closely related A. malaysiensis. In the present study, distinct haplotypes were identified in seven regions of Thailand - AC10 in Phitsanulok (northern region), AC11 in Nakhon Phanom (northeastern region), AC15 in Trat (eastern region), AC16 in Chantaburi (eastern region), AC4 in Samut Prakan (central region), AC14 in Kanchanaburi (western region), and AC13 in Ranong (southern region). Phylogenetic analysis revealed that these haplotypes formed distinct lineages. In general, the COI sequences did not differentiate the worldwide geographical isolates of A. cantonensis. This study has further confirmed the presence of COI haplotype diversity in various geographical isolates of A. cantonensis. The COI gene sequence will be a suitable marker for studying population structure, phylogeography and genetic diversity of the rat lungworm.


Subject(s)
Angiostrongylus cantonensis/enzymology , Electron Transport Complex IV/genetics , Haplotypes , Rodent Diseases/parasitology , Strongylida Infections/veterinary , Angiostrongylus cantonensis/genetics , Animals , Gene Expression Regulation, Enzymologic , Genetic Variation , Phylogeny , Phylogeography , Rats , Rodent Diseases/epidemiology , Strongylida Infections/parasitology , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL
...