Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(33): 18560-18567, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37578470

ABSTRACT

Polymers constructed from copolymerizations of carbohydrates with C1 feedstocks are promising targets that provide transformation of sustainably sourced building blocks into next-generation, environmentally degradable plastic materials. In this work, the initial intention was to expand beyond polycarbonates prepared by the copolymerization of oxetanes derived from d-xylose with CO2 and incorporate sulfur atoms through the establishment of monothiocarbonates that would provide the ability to modulate the backbone compositions and result in unique effects upon the chemical, physical, and mechanical properties. Therefore, the syntheses of poly(1,2-O-isopropylidene-α-d-xylofuranose monothiocarbonate)s were investigated by ring-opening copolymerizations of 3,5-anhydro-1,2-O-isopropylidene-α-d-xylofuranose with carbonyl sulfide (COS) facilitated by (salen)CrCl/cocatalyst systems. Unexpectedly, when copolymerization temperatures exceeded 40 °C, oxygen/sulfur exchange reactions occurred, causing in situ dynamic backbone restructuring through a series of inter-related and complex mechanistic pathways that transformed monothiocarbonate monomeric repeating units into carbonate and thioether dimeric repeating units. These backbone structural compositional transformations were investigated through a combination of Fourier transform infrared and nuclear magnetic resonance spectroscopic techniques and were demonstrated to be easily tuned via temperature and catalyst/cocatalyst stoichiometries. Furthermore, the regiochemistries of these d-xylose-based sulfur-containing polymers revealed that monothiocarbonate monomeric repeating units had a head-to-tail connectivity, while the carbonate and thioether dimeric repeating units had dual head-to-head and tail-to-tail connectivities. These sulfur-containing polymers exhibited enhanced thermal stabilities compared to their oxygen-containing polycarbonate analogues and revealed variations in the effects upon glass transition temperatures, demonstrating the effect of sulfur incorporation in the polymer backbone. These findings contribute to the advancement of sustainable polymer production by using feedstocks of natural origin coupled with COS.

2.
Nat Commun ; 10(1): 293, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30655529

ABSTRACT

Glycidyl azide polymer or poly(glycidyl azide) which is considered as an excellent energetic binder or plasticizer in advanced solid propellants is generally obtained by post-modification or azidation of poly(epichlorohydrin). Here we report that glycidyl azide can be directly homopolymerized through anionic ring-opening polymerization to access poly(glycidyl azide) using onium salts as initiator and triethyl borane as activator. Molar masses of poly(glycidyl azide) up to 11.0 Kg/mol are achieved in a controlled manner with a narrow polydispersity index (PDI ≤ 1.2). Similarly, alternating poly(glycidyl azide carbonate) are also prepared through alternating copolymerization of glycidyl azide with carbon dioxide. Lastly, the copolymerization of glycidyl azide with other epoxide monomers is carried out; the azido functions carried by glycidyl azide which are successfully incorporated into the backbones of polyethers and polycarbonates based on cyclohexene oxide and propylene oxide subsequently served to introduce other functions by click chemistry.

3.
J Am Chem Soc ; 138(35): 11117-20, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27529725

ABSTRACT

Polycarbonates were successfully synthesized for the first time through the anionic copolymerization of epoxides with CO2, under metal-free conditions. Using an approach based on the activation of epoxides by Lewis acids and of CO2 by appropriate cations, well-defined alternating copolymers made of CO2 and propylene oxide (PO) or cyclohexene oxide (CHO) were indeed obtained. Triethyl borane was the Lewis acid chosen to activate the epoxides, and onium halides or onium alkoxides involving either ammonium, phosphonium, or phosphazenium cations were selected to initiate the copolymerization. In the case of PO, the carbonate content of the poly(propylene carbonate) formed was in the range of 92-99% and turnover numbers (TON) were close to 500; in the case of CHO perfectly alternating poly(cyclohexene carbonate) were obtained and TON values were close to 4000. The advantages of such a copolymerization system are manifold: (i) no need for multistep catalyst/ligand synthesis as in previous works; (ii) no transition metal involved in the copolymer synthesis and therefore no coloration of the samples isolated; and (iii) no necessity for postsynthesis purification.

SELECTION OF CITATIONS
SEARCH DETAIL
...