Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(12): e0233580, 2020.
Article in English | MEDLINE | ID: mdl-33264278

ABSTRACT

Sea turtle embryos at high-density nesting beaches experience relative high rates of early stage embryo death. One hypothesis to explain this high mortality rate is that there is an increased probability that newly constructed nests are located close to maturing clutches whose metabolising embryos cause low oxygen levels, high carbon dioxide levels, and high temperatures. Although these altered environmental conditions are well tolerated by mature embryos, early stage embryos, i.e. embryos in eggs that have only been incubating for less than a week, may not be as tolerant leading to an increase in their mortality. To test this hypothesis, we incubated newly laid sea turtle eggs over a range of temperatures in different combinations of oxygen and carbon dioxide concentrations and assessed embryo development and death rates. We found that gas mixtures of decreased oxygen and increased carbon dioxide, similar to those found in natural sea turtle nests containing mature embryos, slowed embryonic development but did not influence the mortality rate of early stage embryos. We found incubation temperature had no effect on early embryo mortality but growth rate at 27°C and 34°C was slower than at 30°C and 33°C. Our findings indicate that low oxygen and high carbon dioxide partial pressures are not the cause of the high early stage embryo mortality observed at high-density sea turtle nesting beaches, but there is evidence suggesting high incubation temperatures, particularly above 34°C are harmful. Any management strategies that can increase the spacing between nests or other strategies such as shading or irrigation that reduce sand temperature are likely to increase hatching success at high-density nesting beaches.


Subject(s)
Carbon Dioxide/pharmacology , Oxygen/pharmacology , Temperature , Turtles/embryology , Animals , Bathing Beaches , Embryonic Development/drug effects , Incubators , Partial Pressure , Queensland , Species Specificity
2.
PLoS One ; 13(4): e0195462, 2018.
Article in English | MEDLINE | ID: mdl-29694365

ABSTRACT

Raine Island hosts the largest nesting aggregation of green turtles in the world, but nest emergence success and hence recruitment of hatchlings off the beach appear to have significantly declined since the 1990s. Nests destroyed by subsequent nesting turtles, and nest failure due to flooding account for most of the nest failure, but many nests still have poor hatch success even when undisturbed and flood-free. In undisturbed, flood-free nests that experience high mortality, embryos typically die at a very early stage of development, a phenomenon we term early embryo death syndrome (EEDS). Previous research indicates that EEDS is correlated with the number of females nesting at Raine Island during a nesting season. Here, we monitor nest temperature and oxygen (PO2) and carbon dioxide (PCO2) partial pressures during the first week after nest construction to discover if they are associated with EEDS. Our investigation found that the proportion of early embryo death was greatest in two nests that experienced the highest nest temperature, lowest PO2 and highest PCO2 during the first week of incubation suggesting that these variables either by themselves or in combination may be the underlying cause of EEDS. These two nests were located adjacent to maturing nests, so the high temperature and more extreme PO2s and PCO2s are most likely to be caused by the combined metabolism of embryos in the mature nests. Although this conclusion is based on just two nests and needs to be substantiated in future studies, it would appear that the laying of new nests in the close location to mature nests could be a significant cause of hatch failure at high density nesting sea turtle rookeries around the world.


Subject(s)
Embryo, Nonmammalian/physiology , Turtles/embryology , Animals , Carbon Dioxide/analysis , Nesting Behavior , Oxygen/analysis , Reproduction , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...