Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 14(9): 2023-34, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26285778

ABSTRACT

Altiratinib (DCC-2701) was designed based on the rationale of engineering a single therapeutic agent able to address multiple hallmarks of cancer (1). Specifically, altiratinib inhibits not only mechanisms of tumor initiation and progression, but also drug resistance mechanisms in the tumor and microenvironment through balanced inhibition of MET, TIE2 (TEK), and VEGFR2 (KDR) kinases. This profile was achieved by optimizing binding into the switch control pocket of all three kinases, inducing type II inactive conformations. Altiratinib durably inhibits MET, both wild-type and mutated forms, in vitro and in vivo. Through its balanced inhibitory potency versus MET, TIE2, and VEGFR2, altiratinib provides an agent that inhibits three major evasive (re)vascularization and resistance pathways (HGF, ANG, and VEGF) and blocks tumor invasion and metastasis. Altiratinib exhibits properties amenable to oral administration and exhibits substantial blood-brain barrier penetration, an attribute of significance for eventual treatment of brain cancers and brain metastases.


Subject(s)
Aminopyridines/pharmacology , Anilides/pharmacology , Drug Resistance, Neoplasm , Neovascularization, Pathologic , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Receptor, TIE-2/antagonists & inhibitors , Tumor Microenvironment , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Aminopyridines/chemistry , Anilides/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Bevacizumab/chemistry , Bevacizumab/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Drug Design , Drug Therapy, Combination , Female , Hepatocyte Growth Factor/metabolism , Humans , Inhibitory Concentration 50 , Melanoma, Experimental , Mice , Models, Molecular , Molecular Conformation , Monocytes/drug effects , Monocytes/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-met/chemistry , Proto-Oncogene Proteins c-met/metabolism , Receptor, TIE-2/metabolism , Recombinant Proteins , Stromal Cells/drug effects , Stromal Cells/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
2.
Mol Cancer Ther ; 8(1): 45-54, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19139112

ABSTRACT

The protein kinase checkpoint kinase 1 (Chk1) has been implicated as a key regulator of cell cycle progression and DNA repair, and inhibitors of Chk1 (e.g., UCN-01 and EXEL-9844) potentiate the cytotoxic actions of chemotherapeutic drugs in tumor cells. We have examined the ability of PD-321852, a small-molecule Chk1 inhibitor, to potentiate gemcitabine-induced clonogenic death in a panel of pancreatic cancer cell lines and evaluated the relationship between endpoints associated with Chk1 inhibition and chemosensitization. Gemcitabine chemosensitization by minimally toxic concentrations of PD-321852 ranged from minimal (<3-fold change in survival) in Panc1 cells to >30-fold in MiaPaCa2 cells. PD-321852 inhibited Chk1 in all cell lines as evidenced by stabilization of Cdc25A; in combination with gemcitabine, a synergistic loss of Chk1 protein was observed in the more sensitized cell lines. Gemcitabine chemosensitization, however, did not correlate with abrogation of the S-M or G2-M checkpoint; PD-321852 did not induce premature mitotic entry in gemcitabine-treated BxPC3 or M-Panc96 cells, which were sensitized to gemcitabine 6.2- and 4.6-fold, respectively. In the more sensitized cells lines, PD-321852 not only inhibited gemcitabine-induced Rad51 focus formation and the recovery from gemcitabine-induced replication stress, as evidenced by persistence of gamma-H2AX, but also depleted these cells of Rad51 protein. Our data suggest the inhibition of this Chk1-mediated Rad51 response to gemcitabine-induced replication stress is an important factor in determining gemcitabine chemosensitization by Chk1 inhibition in pancreatic cancer cells.


Subject(s)
Deoxycytidine/analogs & derivatives , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Biocatalysis , Carbazoles/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Checkpoint Kinase 1 , DNA Damage , Deoxycytidine/pharmacology , Humans , Pancreatic Neoplasms/genetics , Phosphorylation/drug effects , Gemcitabine
3.
Bioorg Med Chem Lett ; 18(3): 929-33, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18191399

ABSTRACT

Pyrrolo[3,4-c]carbazoles bearing solubilising basic side chains at the 8-position retain potent Wee1 and Chk1 inhibitory properties in isolated enzyme assays, and evidence of G2/M checkpoint abrogation in several cellular assays. Co-crystal structure studies confirm that the primary binding to the Wee1 enzyme is as described previously, with the C-8 side chains residing in an area of bulk tolerance.


Subject(s)
Carbazoles/chemical synthesis , Carbazoles/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Combinatorial Chemistry Techniques , Nuclear Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Carbazoles/chemistry , Checkpoint Kinase 1 , Humans , Molecular Structure , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
4.
Eur J Med Chem ; 43(6): 1276-96, 2008 Jun.
Article in English | MEDLINE | ID: mdl-17869387

ABSTRACT

A series of N-6 substituted 9-hydroxy-4-phenylpyrrolo[3,4-c]carbazole-1,3(2H,6H)-diones were prepared from N-substituted (5-methoxyphenyl)ethenylindoles. The target compounds were tested for their ability to inhibit the G2/M cell cycle checkpoint kinases, Wee1 and Chk1. Analogues with neutral or cationic N-6 side chains were potent dual inhibitors. Acidic side chains provided potent (average IC(50) 0.057 microM) and selective (average ratio 223-fold) Wee1 inhibition. Co-crystal structures of inhibitors bound to Wee1 show that the pyrrolo[3,4-c]carbazole scaffold binds in the ATP-binding site, with N-6 substituents involved in H-bonding to conserved water molecules. HT-29 cells treated with doxorubicin and then target compounds demonstrate an active Cdc2/cyclin B complex, inhibition of the doxorubicin-induced phosphorylation of tyrosine 15 of Cdc2 and abrogation of the G2 checkpoint.


Subject(s)
Carbazoles/chemical synthesis , Carbazoles/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Nuclear Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Carbazoles/chemistry , HT29 Cells , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
5.
J Med Chem ; 49(16): 4896-911, 2006 Aug 10.
Article in English | MEDLINE | ID: mdl-16884302

ABSTRACT

High-throughput screening has identified a novel class of inhibitors of the checkpoint kinase Wee1, which have potential for use in cancer chemotherapy. These inhibitors are based on a 4-phenylpyrrolo[3,4-c]carbazole-1,3(2H,6H)-dione template and have been shown by X-ray crystallography to bind at the ATP site of the enzyme. An extensive study of the effects of substitution around this template has been carried out, which has identified substituents which lead to improvements in potency and selectivity for Wee1. While retention of the maleimide ring and pendant 4-phenyl group is necessary for potency, replacement of the carbazole nitrogen by oxygen is well tolerated and results in improved Wee1 selectivity against the related checkpoint kinase Chk1. Wee1 potency and selectivity are also enhanced by the incorporation of lipophilic functionality at the 2'-position of the 4-phenyl ring, and Wee1 selectivity against Chk1 is favored by C3-C5 alkyl substitution of the carbazole nitrogen. These studies provide a basis for the design of active analogues of the pyrrolocarbazole lead with improved physical properties.


Subject(s)
Benzene Derivatives/chemical synthesis , Carbazoles/chemical synthesis , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/chemistry , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/chemistry , Pyrroles/chemical synthesis , Benzene Derivatives/chemistry , Carbazoles/chemistry , Checkpoint Kinase 1 , Crystallography, X-Ray , Humans , Models, Molecular , Protein Binding , Protein Kinases/chemistry , Pyrroles/chemistry , Structure-Activity Relationship
6.
J Med Chem ; 48(7): 2371-87, 2005 Apr 07.
Article in English | MEDLINE | ID: mdl-15801830

ABSTRACT

Inhibition of the cell cycle kinase, cyclin-dependent kinase-4 (Cdk4), is expected to provide an effective method for the treatment of proliferative diseases such as cancer. The pyrido[2,3-d]pyrimidin-7-one template has been identified previously as a privileged structure for the inhibition of ATP-dependent kinases, and good potency against Cdks has been reported for representative examples. Obtaining selectivity for individual Cdk enzymes, particularly Cdk4, has been challenging. Here, we report that the introduction of a methyl substituent at the C-5 position of the pyrido[2,3-d]pyrimidin-7-one template is sufficient to confer excellent selectivity for Cdk4 vs other Cdks and representative tyrosine kinases. Further optimization led to the identification of highly potent and selective inhibitors of Cdk4 that exhibit potent antiproliferative activity against human tumor cells in vitro. The most selective Cdk4 inhibitors were evaluated for antitumor activity against MDA-MB-435 human breast carcinoma xenografts in mice.


Subject(s)
Antineoplastic Agents/chemical synthesis , Cyclin-Dependent Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pyridines/chemical synthesis , Pyrimidines/chemical synthesis , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinases/chemistry , Drug Screening Assays, Antitumor , Humans , Mice , Mice, Nude , Models, Molecular , Proto-Oncogene Proteins/chemistry , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Stereoisomerism , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...