Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Gen Comp Endocrinol ; 313: 113889, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34425086

ABSTRACT

Understanding baseline hormone levels, the magnitude of intra-individual variability, and their variation as a function of life history is difficult in toothed whales (e.g. dolphins and porpoises) because of the effects of capture stress. To determine the endocrine profile of the common bottlenose dolphin (Tursiops truncatus) as a function of season, time of day (TOD), age, sex, and reproductive status, blood corticosteroids, thyroid hormones, and catecholamines were repeatedly measured in a managed-care population exposed to ambient light and water temperatures of San Diego Bay. Additionally, fecal hormone metabolites were assessed for cortisol, aldosterone, and triiodothyronine. Samples were collected at two to four-week intervals over a period of two years, and multiple times within a day at monthly intervals over a year. Samples were collected through the voluntary participation of the dolphins in the blood draws and fecal collections in order to avoid the effects of handling stress. All serum hormones except aldosterone significantly varied with season and all serum hormones except total thyroxine significantly varied as a function of TOD. Fecal glucocorticoid metabolites significantly correlated with circulating cortisol levels, and there was a significant seasonal effect on triiodothyronine fecal metabolites. Strong seasonal effects demonstrated complex interactions with age and sex suggesting that contextual information is critical to interpreting differences in endocrine profiles. Strong circadian patterns further suggest that sampling design is important to the interpretation of blood or fecal collections, particularly since diurnal changes in some serum hormone levels are similar to the magnitude of seasonal differences. Despite potential impacts of feeding schedules on diurnal patterns, managed care populations can provide important insights into seasonal and age-related endocrine changes in toothed whales.


Subject(s)
Bottle-Nosed Dolphin , Animals , Endocrine System/metabolism , Hydrocortisone/metabolism , Seasons , Thyroxine
2.
Gen Comp Endocrinol ; 195: 174-82, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24239792

ABSTRACT

We validate fecal glucocorticoid (GC) and thyroid (T3) hormone metabolite measures in the Critically Endangered Hawaiian monk seal for the first time, and examine variation in the concentrations of these hormones in individuals across the species' range. We test hypotheses that monk seals from declining subpopulations have relatively high GCs and low T3 on average suggesting impacts of food limitation, and that this hormone pattern is more apparent in immature animals compared to adults, as food limitation is specifically indicated as a principal cause of poor body condition and survival of juvenile monk seals. We opportunistically sampled scat from 84 individually identifiable monk seals during the 2010 breeding season from two geographic regions, the main Hawaiian Islands (MHI) and the Northwestern Hawaiian Islands (NWHI). The MHI subpopulation of monk seals is growing, whereas subpopulations at many sites in the NWHI are in decline. Best fit general linear models predicting variation in GCs and T3 (examined separately) were similar (after accounting for significantly elevated hormone concentrations associated with molt and possibly lactation); both included sample date, region, and monk seal age as predictors. GC concentrations were significantly lower in MHI versus NWHI monk seals and decreased as the breeding season progressed. T3 concentrations were significantly lower in immature monk seals compared to adults. GC and T3 concentrations were positively correlated at 4 NWHI sites; prey may be adequate for physiological growth or maintenance at these sites but relatively stressful to acquire. GCs were highest at French Frigate Shoals, (a NWHI site) while T3 was relatively low here, indicating a possible signal of food limitation. GCs were lowest in the MHI. Disturbance associated with living near a high human population in the MHI appears to impact monk seal physiology less than other stressors encountered in the remote and highly protected NWHI where human presence is extremely low.


Subject(s)
Feces/chemistry , Glucocorticoids/analysis , Radioimmunoassay/methods , Seals, Earless/metabolism , Seasons , Thyroid Hormones/analysis , Animals , Glucocorticoids/metabolism , Humans , Thyroid Hormones/metabolism
3.
Gen Comp Endocrinol ; 172(3): 382-91, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21501613

ABSTRACT

Climate change and industrial development are contributing to synchronous declines in Rangifer populations across the Arctic. Chronic stress has been implicated as a proximate factor associated with decline in free-ranging populations, but its role in Rangifer is unspecified. Analysis of glucocorticosteroid (GC) concentration in feces, and more recently in hair, is a non-invasive method for monitoring stress in wildlife. Adrenocorticotropic hormone (ACTH) released from the pituitary gland stimulates GC release from the adrenals and can be administered to reflect adrenal activation. In this study, we assessed concentrations of GC metabolites in feces and cortisol in hair of Alaskan caribou (Rangifer tarandus granti) and reindeer (R. t. tarandus) following ACTH treatment. We predicted that ACTH challenge would increase concentrations of fecal GCs, but not hair cortisol because steroid deposited into the hair shaft occurs over an extended period of time (months) and is likely insensitive to acute adrenal stimulation. Adult caribou (n=10; mean age, 6.5 years old) exhibited a peak increase in fecal GCs 8h following a 2 IU/kg dose of ACTH compared to pre-injection concentrations. In contrast, sub-adult reindeer (n=10, 0.8 years old) elicited a diminished response to the same dose. Quadrupling the dose (8 IU/kg) prolonged the fecal GC response in female reindeer, but male reindeer were unresponsive. Hair cortisol was unaffected by a single ACTH challenge. Further investigation is required to ascertain whether subspecific differences in adrenal sensitivity are attributed to age or sex differences, or historical selective pressures from semi-domestication and/or sedentary life cycle in reindeer.


Subject(s)
Adrenocorticotropic Hormone/pharmacology , Deer/metabolism , Feces/chemistry , Glucocorticoids/metabolism , Hair/chemistry , Reindeer/metabolism , Animals , Deer/physiology , Female , Hydrocortisone/blood , Male , Reindeer/physiology , Stress, Physiological
4.
Gen Comp Endocrinol ; 166(1): 180-5, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-19941866

ABSTRACT

Variation in concentrations of thyroid hormones shed in feces may help to identify physiological states of animals, but the efficacy of the technique needs to be validated for each species. We determined whether a known physiological alteration to thyroid hormone production was reflected in hormone concentrations in the feces of Steller sea lions (Eumetopias jubatus). We quantified variation of triiodothyronine (T3) and thyroxine (T4) concentrations in feces following two intramuscular injections of thyrotropin (thyroid-stimulating hormone, TSH) at 24h intervals in four captive female sea lions. We found fecal T3 concentrations increased 18-57% over concentrations measured in the baseline sample collected closest to the time of the first TSH injection (p=0.03) and 1-75% over the mean baseline concentration (p=0.12) for each animal of all samples collected prior to injections. Peak T3 concentrations were greater than the upper bound of the baseline 95% confidence interval for three animals. The peak T3 response occurred 48h post-injection in three animals and 71h in the fourth. Post-injection T4 concentrations did not differ between the baseline sample collected closest to the time of the first TSH injection (p=0.29) or the mean baseline concentration (p=0.23) for each animal. These results indicate that induced physiological alterations to circulating thyroid hormone concentrations can be adequately detected through analyses of fecal T3 concentrations and that the technique may provide a means of non-invasively detecting metabolic changes in Steller sea lions.


Subject(s)
Feces/chemistry , Sea Lions/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism , Animals , Female , Injections, Intramuscular , Specimen Handling , Thyroid Gland/metabolism , Thyrotropin/administration & dosage
5.
Fish Physiol Biochem ; 36(3): 355-365, 2010 Sep.
Article in English | MEDLINE | ID: mdl-19130281

ABSTRACT

The adaptability/plasticity of the highly oxidative red muscle in Atlantic salmon was demonstrated during spawning migration. Substrate concentrations and the enzymatic pathways of ATP production were examined in red muscle obtained from Atlantic salmon at different sites along their migratory route in the Exploits River, Newfoundland, Canada. Individuals were chronologically sampled from a seawater site, two sites upstream, and at spawning. The 20% decrease in salmon body weight during the later stages of migration was accompanied by large decreases (mg dry weight(-1)) in both glycogen (P < 0.01) and total muscle lipid (P < 0.01). In contrast, water content and protein concentration (mg dry weight(-1)) of the red muscle increased by 25 and 34%, respectively, at spawning. Enzymes of the glycolytic pathways demonstrated a significant (P < 0.001) decrease in maximal activity as migration proceeded whereas enzymes of the oxidative phosphorylation pathways, specifically the citric acid cycle enzymes, exhibited an increase (P < 0.001) in maximal activity at spawning. The antioxidant enzyme superoxide dismutase also demonstrated an increase (P < 0.001) in maximal activity during the latter stages of migration. These adaptations imply that the red epaxial muscle of Atlantic salmon has a more efficient means of oxidizing lipids, while minimizing free radical damage, during the later stages of migration and spawning, thereby potentially increasing post spawning survival.


Subject(s)
Animal Migration/physiology , Energy Metabolism/physiology , Muscle, Skeletal/enzymology , Muscle, Skeletal/physiology , Salmo salar/physiology , Adenosine Triphosphate/biosynthesis , Analysis of Variance , Animals , Body Water/metabolism , Glycogen/metabolism , Lipid Metabolism , Newfoundland and Labrador , Rivers , Sexual Behavior, Animal/physiology , Spectrophotometry, Ultraviolet , Superoxide Dismutase/metabolism , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL
...