Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Autoimmun Rev ; 23(6): 103574, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782083

ABSTRACT

Large-vessel vasculitides (LVV) comprise a group of chronic inflammatory diseases of the aorta and its major branches. The most common forms of LVV are giant cell arteritis (GCA) and Takayasu arteritis (TAK). Both GCA and TAK are characterized by granulomatous inflammation of the vessel wall accompanied by a maladaptive immune and vascular response that promotes vascular damage and remodeling. The inflammatory process in LVV starts in the adventitia where fibroblasts constitute the dominant cell population. Fibroblasts are traditionally recognized for synthesizing and renewing the extracellular matrix thereby being major players in maintenance of normal tissue architecture and in tissue repair. More recently, fibroblasts have emerged as a highly plastic cell population exerting various functions, including the regulation of local immune processes and organization of immune cells at the site of inflammation through production of cytokines, chemokines and growth factors as well as cell-cell interaction. In this review, we summarize and discuss the current knowledge on fibroblasts in LVV. Furthermore, we identify key questions that need to be addressed to fully understand the role of fibroblasts in the pathogenesis of LVV.

2.
J Autoimmun ; 146: 103215, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653164

ABSTRACT

INTRODUCTION: The IL-12-IFNγ-Th1 and the IL-6-IL-23-Th17 axes are considered the dominant pathogenic pathways in Giant Cell Arteritis (GCA). Both pathways signal via activation of the downstream JAK/STAT proteins. We hypothesized that phosphorylated STAT (pSTAT) signatures in circulating immune cells may aid to stratify GCA-patients for personalized treatment. METHODS: To investigate pSTAT expression, PBMCs from treatment-naive GCA-patients (n = 18), infection controls (INF, n = 11) and age-matched healthy controls (HC, n = 15) were stimulated in vitro with IL-6, IL-2, IL-10, IFN-γ, M-CSF or GM-CSF, and stained with CD3, CD4, CD19, CD45RO, pSTAT1, pSTAT3, pSTAT5 antibodies, and analyzed by flow cytometry. Serum IL-6, sIL-6-receptor and gp130 were measured by Luminex. The change in percentages of pSTAT3+CD4+T-cells was evaluated at diagnosis and at 3 months and 1-year of follow-up. Kaplan-Meier analyses was used to asses prognostic accuracy. RESULTS: Analysis of IL-6 stimulated immune cell subsets revealed a significant decrease in percentages of pSTAT3+CD4+T-cells of GCA-patients and INF-controls compared to HCs. Following patient stratification according to high (median>1.5 pg/mL) and low (median<1.5 pg/mL) IL-6 levels, we observed a reduction in the pSTAT3 response in GCA-patients with high serum IL-6. Percentages of pSTAT3+CD4+T-cells in patients with high serum IL-6 levels at diagnosis normalized after glucocorticoid (GC) treatment. Importantly, we found that patients with low percentages of pSTAT3+CD4+T-cells at baseline require longer GC-treatment. CONCLUSION: Overall, in GCA, the percentages of in vitro IL-6-induced pSTAT3+CD4+T-cells likely reflect prior in vivo exposure to high IL-6 and may serve as a prognostic marker for GC-treatment duration and may assist improving personalized treatment options in the future.


Subject(s)
CD4-Positive T-Lymphocytes , Giant Cell Arteritis , Interleukin-6 , Signal Transduction , Humans , Giant Cell Arteritis/immunology , Giant Cell Arteritis/diagnosis , Giant Cell Arteritis/drug therapy , Giant Cell Arteritis/metabolism , Interleukin-6/metabolism , Interleukin-6/blood , Female , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Male , Aged , Janus Kinases/metabolism , Middle Aged , Phosphorylation , STAT3 Transcription Factor/metabolism , Aged, 80 and over , STAT Transcription Factors/metabolism , Receptors, Interleukin-6/metabolism , Biomarkers , Cytokine Receptor gp130/metabolism
3.
Article in English | MEDLINE | ID: mdl-38685696

ABSTRACT

OBJECTIVE: Giant cell arteritis (GCA) is characterized by granulomatous inflammation of the medium- and large-sized arteries accompanied by remodeling of the vessel wall. Fibroblast activation protein alpha (FAP) is a serine protease that promotes both inflammation and fibrosis. Here, we investigated the plasma levels and vascular expression of FAP in GCA. METHODS: Plasma FAP levels were measured with enzyme-linked immunosorbent assay in treatment-naive patients with GCA (n = 60) and polymyalgia rheumatica (PMR) (n = 63) compared with age- and sex-matched healthy controls (HCs) (n = 42) and during follow-up, including treatment-free remission (TFR). Inflamed temporal artery biopsies (TABs) of patients with GCA (n = 9), noninflamed TABs (n = 14), and aorta samples from GCA-related (n = 9) and atherosclerosis-related aneurysm (n = 11) were stained for FAP using immunohistochemistry. Immunofluorescence staining was performed for fibroblasts (CD90), macrophages (CD68/CD206/folate receptor beta), vascular smooth muscle cells (desmin), myofibroblasts (α-smooth muscle actin), interleukin-6 (IL-6), and matrix metalloproteinase-9 (MMP-9). RESULTS: Baseline plasma FAP levels were significantly lower in patients with GCA compared with patients with PMR and HCs and inversely correlated with systemic markers of inflammation and angiogenesis. FAP levels decreased even further at 3 months on remission in patients with GCA and gradually increased to the level of HCs in TFR. FAP expression was increased in inflamed TABs and aorta of patients with GCA compared with control tissues. FAP was abundantly expressed in fibroblasts and macrophages. Some of the FAP+ fibroblasts expressed IL-6 and MMP-9. CONCLUSION: FAP expression in GCA is clearly modulated both in plasma and in vessels. FAP may be involved in the inflammatory and remodeling processes in GCA and have utility as a target for imaging and therapeutic intervention.

4.
J Autoimmun ; 140: 103111, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37703805

ABSTRACT

OBJECTIVE: The lack of disease-specific autoantibodies in giant cell arteritis (GCA) suggests an alternative role for B-cells readily detected in the inflamed arteries. Here we study the cytokine profile of tissue infiltrated and peripheral blood B-cells of patients with GCA. Moreover, we investigate the macrophage skewing capability of B-cell-derived cytokines. METHODS: The presence of various cytokines in B-cell areas in temporal artery (n = 11) and aorta (n = 10) was identified by immunohistochemistry. PBMCs of patients with GCA (n = 11) and polymyalgia rheumatica (n = 10), and 14 age- and sex-matched healthy controls (HC) were stimulated, followed by flow cytometry for cytokine expression in B-cells. The skewing potential of B-cell-derived cytokines (n = 6 for GCA and HC) on macrophages was studied in vitro. RESULTS: The presence of IL-6, GM-CSF, TNFα, IFNγ, LTß and IL-10 was documented in B-cells and B-cell rich areas of GCA arteries. In vitro, B-cell-derived cytokines (from both GCA and HC) skewed macrophages towards a pro-inflammatory phenotype with enhanced expression of IL-6, IL-1ß, TNFα, IL-23, YKL-40 and MMP-9. In vitro stimulated peripheral blood B-cells from treatment-naïve GCA patients showed an enhanced frequency of IL-6+ and TNFα+IL-6+ B-cells compared to HCs. This difference was no longer detected in treatment-induced remission. Erythrocyte sedimentation rate positively correlated with IL-6+TNFα+ B-cells. CONCLUSION: B-cells are capable of producing cytokines and steering macrophages towards a pro-inflammatory phenotype. Although the capacity of B-cells in skewing macrophages is not GCA specific, these data support a cytokine-mediated role for B-cells in GCA and provide grounds for B-cell targeted therapy in GCA.

5.
Arthritis Rheumatol ; 75(10): 1812-1818, 2023 10.
Article in English | MEDLINE | ID: mdl-37057491

ABSTRACT

OBJECTIVE: Giant cell arteritis (GCA) affects almost exclusively individuals above 50 years old, suggesting a role of aging-related changes such as cellular senescence in its pathobiology. The kinases p21(WAF1/CIP1) and p16/INK4A play key roles in 2 distinct pathways leading to senescence. The proinflammatory molecules interleukin-6 (IL-6) and granulocyte-macrophage colony-stimulating factor (GM-CSF), which are key components of the senescence-associated secretory phenotype (SASP), are effective targets of treatment in GCA. Here, we aimed to investigate the presence of p21+ and p16+ cells producing these SASP cytokines in temporal artery biopsies (TABs) of patients with GCA. METHODS: Eight patients with GCA and 14 age-matched, non-GCA individuals who underwent a TAB were included. Immunohistochemical staining of p21, p16, IL-6, and GM-CSF was performed. Multiplex immunofluorescent staining was performed to investigate the colocalization of p21 and p16 with IL-6, GM-CSF, and immune cell markers (CD68, CD3, CD20). RESULTS: We found that expression levels of p16, p21, IL-6, and GM-CSF were elevated in the TABs of patients with GCA. Both p16- and p21-expressing cells were mainly found near the internal lamina elastica, especially among giant cells and macrophages, although p21 and p16 expression could be found in all 3 layers of the vessels. Expression of p16 and p21 was occasionally found in T cells but not B cells. The p16+ and p21+ cells expressing GM-CSF/IL-6 were detected throughout the TABs. CONCLUSION: Our data suggest the presence of activated senescence pathways at the site of vascular inflammation in GCA and support further research into the role of senescence in the pathophysiology of GCA.


Subject(s)
Giant Cell Arteritis , Temporal Arteries , Humans , Middle Aged , Biomarkers/metabolism , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Giant Cell Arteritis/pathology , Granulocyte-Macrophage Colony-Stimulating Factor , Interleukin-6/metabolism , Temporal Arteries/pathology
6.
Front Immunol ; 14: 1128270, 2023.
Article in English | MEDLINE | ID: mdl-36969157

ABSTRACT

Background: Several studies implicate Th17-cells and its cytokine (IL-17) in disease pathogenesis of spondyloarthritis (SpA), with available evidence supporting a pathogenic role of CD8+ T-cells. However, data on the involvement of CD8+ mucosal-associated invariant T-cells (MAIT) and their phenotypic characterization and inflammatory function including IL-17 and Granzyme A production in a homogenous population of SpA-patients with primarily axial disease (axSpA) are lacking. Objectives: Quantify and characterize the phenotype and function of circulating CD8+MAIT-cells in axSpA-patients with primarily axial disease. Methods: Blood samples were obtained from 41 axSpA-patients and 30 age- and sex-matched healthy controls (HC). Numbers and percentages of MAIT-cells (defined as CD3+CD8+CD161highTCRVα7.2 +) were determined, and production of IL-17 and Granzyme A (GrzA) by MAIT-cells were examined by flow cytometry upon in vitro stimulation. Serum IgG specific for CMV was measured by ELISA. Results: No significant differences in numbers and percentages of circulating MAIT-cells were found between axSpA-patients and HCr zijn meer resultaten de centrale memory CD8 T cellen. cellen van patirculating MAIT cells.. Further phenotypic analysis revealed a significant decrease in numbers of central memory MAIT-cells of axSpA-patients compared to HC. The decrease in central memory MAIT-cells in axSpA patients was not attributed to an alteration in CD8 T-cell numbers, but correlated inversely with serum CMV-IgG titers. Production of IL-17 by MAIT-cells was comparable between axSpA-patients and HC, whereas a significant decrease in the production of GrzA by MAIT-cells from axSpA-patients was observed. Conclusions: The decrease in cytotoxic capability of circulating MAIT-cells in axSpA-patients might implicate that these cell types migrate to the inflamed tissue and therefore associate with the axial disease pathogenesis.


Subject(s)
Axial Spondyloarthritis , Cytomegalovirus Infections , Mucosal-Associated Invariant T Cells , Humans , Granzymes , Interleukin-17 , Immunoglobulin G
7.
RMD Open ; 9(1)2023 01.
Article in English | MEDLINE | ID: mdl-36631159

ABSTRACT

OBJECTIVES: Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are age-associated inflammatory diseases that frequently overlap. Both diseases require long-term treatment with glucocorticoids (GCs), often associated with comorbidities. Previous population-based cohort studies reported that an unhealthier metabolic profile might prevent the development of GCA. Here, we report metabolic features before start of treatment and during treatment in patients with GCA and PMR. METHODS: In the Dutch GCA/PMR/SENEX (GPS) cohort, we analysed metabolic features and prevalence of comorbidities (type 2 diabetes, hypercholesterolaemia, hypertension, obesity and cataract) in treatment-naïve patients with GCA (n=50) and PMR (n=42), and compared those with the population-based Lifelines cohort (n=91). To compare our findings in the GPS cohort, we included data from patients with GCA (n=52) and PMR (n=25) from the Aarhus cohort. Laboratory measurements, comorbidities and GC use were recorded for up to 5 years in the GPS cohort. RESULTS: Glycated haemoglobin levels tended to be higher in treatment-naïve patients with GCA, whereas high-density lipoprotein, low-density lipoprotein and cholesterol levels were lower compared with the Lifelines population. Data from the Aarhus cohort were aligned with the findings obtained in the GPS cohort. Presence of comorbidities at baseline did not predict long-term GC requirement. The incidence of diabetes, obesity and cataract among patients with GCA increased upon initiation of GC treatment. CONCLUSION: Data from the GCA and PMR cohorts imply a metabolic dysregulation in treatment-naïve patients with GCA, but not in patients with PMR. Treatment with GCs led to the rise of comorbidities and an unhealthier metabolic profile, stressing the need for prednisone-sparing targeted treatment in these vulnerable patients.


Subject(s)
Cataract , Diabetes Mellitus, Type 2 , Giant Cell Arteritis , Polymyalgia Rheumatica , Humans , Giant Cell Arteritis/drug therapy , Giant Cell Arteritis/epidemiology , Giant Cell Arteritis/etiology , Polymyalgia Rheumatica/complications , Polymyalgia Rheumatica/drug therapy , Polymyalgia Rheumatica/epidemiology , Glucocorticoids/adverse effects , Diabetes Mellitus, Type 2/complications , Obesity/complications , Cataract/epidemiology , Cataract/etiology , Denmark
9.
Front Immunol ; 13: 943574, 2022.
Article in English | MEDLINE | ID: mdl-36032100

ABSTRACT

Background: Although polymyalgia rheumatica (PMR) is a very common rheumatic inflammatory disease, current insight into the pathobiology of PMR is limited and largely based on studies in blood. We investigated T helper 1 (TH1) and T helper 17 (TH17) cell responses in blood, synovial fluid and bursa tissue of patients with PMR. Materials and methods: Blood samples were collected from 18 patients with new-onset PMR and 32 healthy controls. Synovial fluid was aspirated from the inflamed shoulder bursae or biceps tendon sheath of 13 patients. Ultrasound-guided biopsies of the subacromial-subdeltoid (SASD) bursa were obtained from 11 patients. T cells were examined by flow cytometry, immunohistochemistry and immunofluorescence staining. Results: Besides an increase of TH17 (CD4+IL-17+IFN-γ-) cells and T cytotoxic 17 (TC17; CD8+IL-17+IFN-γ-) cells, no other major changes were noted in the circulating T cell compartment of patients with PMR. Absolute numbers of CD4+ and CD8+ T cells were similar in blood and synovial fluid of patients with PMR. Synovial fluid T cells showed an effector-memory (CD45RO+CCR7-) phenotype. Percentages of TH1 (CD4+IFN-γ+IL-17-) cells and TH1/TH17 (CD4+IFN-γ+IL-17+) cells, but not TH17 or TC17 cells, were increased in the synovial fluid. Bursa tissue biopsies contained a small number of T cells, which were mostly CD8 negative. The majority of bursa tissue T cells produced IFN-γ but not IL-17. For comparison, B cells were scarcely detected in the bursa tissue. Conclusion: Although the circulating TH17 cell pool is expanded in patients with PMR, our findings indicate that TH1 cells are involved in the inflammation of bursae and tendon sheaths in this condition. Our study points towards the TH1 cell pathway as a potential target for therapy in PMR.


Subject(s)
Bursitis , Giant Cell Arteritis , Polymyalgia Rheumatica , Tenosynovitis , CD8-Positive T-Lymphocytes , Humans
10.
Rheumatology (Oxford) ; 62(1): 417-427, 2022 12 23.
Article in English | MEDLINE | ID: mdl-35460236

ABSTRACT

OBJECTIVES: Evidence from temporal artery tissue and blood suggests involvement of CD8+ T cells in the pathogenesis of GCA, but their exact role is poorly understood. Therefore, we performed a comprehensive analysis of circulating and lesional CD8+ T cells in GCA patients. METHODS: Circulating CD8+ T cells were analysed for differentiation status (CD45RO, CCR7), markers of activation (CD69 and CD25) and proliferation (Ki-67) in 14 newly diagnosed GCA patients and 18 healthy controls by flow cytometry. Proliferative capacity of CD8+ T cells upon anti-CD3 and anti-CD3/28 in vitro stimulation was assessed. Single-cell RNA sequencing of peripheral blood mononuclear cells of patients and controls (n = 3 each) was performed for mechanistic insight. Immunohistochemistry was used to detect CD3, CD8, Ki-67, TNF-α and IFN-γ in GCA-affected tissues. RESULTS: GCA patients had decreased numbers of circulating effector memory CD8+ T cells but the percentage of Ki-67-expressing effector memory CD8+ T cells was increased. Circulating CD8+ T cells from GCA patients demonstrated reduced T cell receptor activation thresholds and displayed a gene expression profile that is concurrent with increased proliferation. CD8+ T cells were detected in GCA temporal arteries and aorta. These vascular CD8+ T cells expressed IFN-γ but not Ki-67. CONCLUSION: In GCA, circulating effector memory CD8+ T cells demonstrate a proliferation-prone phenotype. The presence of CD8+ T cells in inflamed arteries seems to reflect recruitment of circulating cells rather than local expansion. CD8+ T cells in inflamed tissues produce IFN-γ, which is an important mediator of local inflammatory responses in GCA.


Subject(s)
Giant Cell Arteritis , Humans , Giant Cell Arteritis/pathology , Transcriptome , Leukocytes, Mononuclear/metabolism , CD8-Positive T-Lymphocytes/metabolism , Phenotype
11.
Arthritis Res Ther ; 24(1): 65, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35255968

ABSTRACT

BACKGROUND: Diagnosing patients with giant cell arteritis (GCA) remains difficult. Due to its non-specific symptoms, it is challenging to identify GCA in patients presenting with symptoms of polymyalgia rheumatica (PMR), which is a more common disease. Also, commonly used acute-phase markers CRP and ESR fail to discriminate GCA patients from PMR and (infectious) mimicry patients. Therefore, we investigated biomarkers reflecting vessel wall inflammation for their utility in the accurate diagnosis of GCA in two international cohorts. METHODS: Treatment-naïve GCA patients participated in the Aarhus AGP cohort (N = 52) and the Groningen GPS cohort (N = 48). The AGP and GPS biomarker levels and symptoms were compared to patients presenting phenotypically as isolated PMR, infectious mimicry controls and healthy controls (HCs). Serum/plasma levels of 12 biomarkers were measured by ELISA or Luminex. RESULTS: In both the AGP and the GPS cohort, we found that weight loss, elevated erythrocyte sedimentation rate (ESR) and higher angiopoietin-2/-1 ratios but lower matrix metalloproteinase (MMP)-3 levels identify concomitant GCA in PMR patients. In addition, we confirmed that elevated platelet counts are characteristic of GCA but not of GCA mimicry controls and that low MMP-3 and proteinase 3 (PR3) levels may help to discriminate GCA from infections. CONCLUSION: This study, performed in two independent international cohorts, consistently shows the potential of angiopoietin-2/-1 ratios and MMP-3 levels to identify GCA in patients presenting with PMR. These biomarkers may be used to select which PMR patients require further diagnostic workup. Platelet counts may be used to discriminate GCA from GCA look-alike patients.


Subject(s)
Angiopoietin-1/blood , Angiopoietin-2/blood , Giant Cell Arteritis , Matrix Metalloproteinase 3 , Polymyalgia Rheumatica , Biomarkers/blood , Cohort Studies , Giant Cell Arteritis/diagnosis , Humans , Matrix Metalloproteinase 3/blood , Polymyalgia Rheumatica/diagnosis
12.
Clin Transl Immunology ; 11(2): e1374, 2022.
Article in English | MEDLINE | ID: mdl-35154709

ABSTRACT

OBJECTIVE: The aim of this exploratory study was to investigate the development of low-grade inflammation during ageing and its relationship with frailty. METHODS: The trajectories of 18 inflammatory markers measured in blood samples, collected at 5-year intervals over a period of 20 years from 144 individuals aged 65-75 years at the study endpoint, were related to the degree of frailty later in life. RESULTS: IFN-γ-related markers and platelet activation markers were found to change in synchrony. Chronically elevated levels of IL-6 pathway markers, such as CRP and sIL-6R, were associated with more frailty, poorer lung function and reduced physical strength. Being overweight was a possible driver of these associations. More and stronger associations were detected in women, such as a relation between increasing sCD14 levels and frailty, indicating a possible role for monocyte overactivation. Multivariate prediction of frailty confirmed the main results, but predictive accuracy was low. CONCLUSION: In summary, we documented temporal changes in and between inflammatory markers in an ageing population over a period of 20 years, and related these to clinically relevant health outcomes.

14.
Rheumatology (Oxford) ; 61(7): 3060-3070, 2022 07 06.
Article in English | MEDLINE | ID: mdl-34730794

ABSTRACT

OBJECTIVES: GCA is a large vessel vasculitis in which metabolically active immune cells play an important role. GCA diagnosis is based on CRP/ESR and temporal artery biopsies (TABs), in combination with 18F-fluorodeoxyglucose ([18F]FDG)-PET/CT relying on enhanced glucose uptake by glycolytic macrophages. Here, we studied circulating Pyruvate Kinase M2 (PKM2), a glycolytic enzyme, as a possible systemic marker of vessel wall inflammation in GCA. METHODS: Immunohistochemical detection of PKM2 was performed on inflamed (n = 12) and non-inflamed (n = 4) TABs from GCA patients and non-GCA (n = 9) patients. Dimeric PKM2 levels were assessed in plasma of GCA patients (n = 44), age-matched healthy controls (n = 41), metastatic melanoma patients (n = 7) and infection controls (n = 11). CRP, ESR and macrophage markers calprotectin and YKL-40 were correlated with plasma PKM2 levels. To detect the cellular source of plasma PKM2 in tissue, double IF staining was performed on inflamed GCA TABs. [18F]FDG-PET scans of 23 GCA patients were analysed and maximum standard uptake values and target to background ratios were calculated. RESULTS: PKM2 is abundantly expressed in TABs of GCA patients. Dimeric PKM2 plasma levels were elevated in GCA and correlated with CRP, ESR, calprotectin and YKL-40 levels. Elevated plasma PKM2 levels were downmodulated by glucocorticoid treatment. PKM2 was detected in both macrophages and T cells at the site of vascular inflammation. Circulating PKM2 levels correlated with average target to background ratios PET scores. CONCLUSION: Elevated plasma PKM2 levels reflect active vessel inflammation in GCA and may assist in disease diagnosis and in disease monitoring.


Subject(s)
Carrier Proteins , Giant Cell Arteritis , Membrane Proteins , Thyroid Hormones , Biomarkers/blood , Carrier Proteins/blood , Chitinase-3-Like Protein 1 , Fluorodeoxyglucose F18 , Giant Cell Arteritis/diagnostic imaging , Giant Cell Arteritis/pathology , Humans , Inflammation , Leukocyte L1 Antigen Complex , Membrane Proteins/blood , Positron Emission Tomography Computed Tomography , Pyruvate Kinase , Thyroid Hormones/blood , Thyroid Hormone-Binding Proteins
15.
J Clin Med ; 10(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34768479

ABSTRACT

Giant cell arteritis (GCA) is a granulomatous large-vessel vasculitis that affects adults above 50 years of age. In GCA, circulating monocytes are recruited to the inflamed arteries. With cues from the vascular microenvironment, they differentiate into macrophages and play important roles in the pathogenesis of GCA via pro-inflammatory cytokine production and vascular remodeling. However, a deeper understanding of macrophage heterogeneity in GCA pathogenesis is needed to assist the development of novel diagnostic tools and targeted therapies. Here, we review the current knowledge on macrophage heterogeneity and diverse functions of macrophage subsets in the pathogenesis of GCA. We next discuss the possibility to exploit their heterogeneity as a source of novel biomarkers and as targets for nuclear imaging. Finally, we discuss novel macrophage-targeted therapies and future directions for targeting these cells in GCA.

16.
J Autoimmun ; 123: 102684, 2021 09.
Article in English | MEDLINE | ID: mdl-34237649

ABSTRACT

OBJECTIVE: B-cells are present in the inflamed arteries of giant cell arteritis (GCA) patients and a disturbed B-cell homeostasis is reported in peripheral blood of both GCA and the overlapping disease polymyalgia rheumatica (PMR). In this study, we aimed to investigate chemokine-chemokine receptor axes governing the migration of B-cells in GCA and PMR. METHODS: We performed Luminex screening assay for serum levels of B-cell related chemokines in treatment-naïve GCA (n = 41), PMR (n = 31) and age- and sex matched healthy controls (HC, n = 34). Expression of chemokine receptors on circulating B-cell subsets were investigated by flow cytometry. Immunohistochemistry was performed on GCA temporal artery (n = 14) and aorta (n = 10) and on atherosclerosis aorta (n = 10) tissue. RESULTS: The chemokines CXCL9 and CXCL13 were significantly increased in the circulation of treatment-naïve GCA and PMR patients. CXCL13 increased even further after three months of glucocorticoid treatment. At baseline CXCL13 correlated with disease activity markers. Peripheral CXCR3+ and CXCR5+ switched memory B-cells were significantly reduced in both patient groups and correlated inversely with their complementary chemokines CXCL9 and CXCL13. At the arterial lesions in GCA, CXCR3+ and CXCR5+ B-cells were observed in areas with high CXCL9 and CXCL13 expression. CONCLUSION: Changes in systemic and local chemokine and chemokine receptor pathways related to B-cell migration were observed in GCA and PMR mainly in the CXCL9-CXCR3 and CXCL13-CXCR5 axes. These changes can contribute to homing and organization of B-cells in the vessel wall and provide further evidence for an active involvement of B-cells in GCA and PMR.


Subject(s)
B-Lymphocytes/physiology , Chemokines/physiology , Giant Cell Arteritis/immunology , Polymyalgia Rheumatica/immunology , Aged , Aged, 80 and over , Cell Movement , Chemokine CXCL13/blood , Chemokine CXCL13/physiology , Chemokine CXCL9/blood , Chemokine CXCL9/physiology , Female , Giant Cell Arteritis/etiology , Humans , Male , Middle Aged , Polymyalgia Rheumatica/etiology , Receptors, CXCR3/blood , Receptors, CXCR3/physiology , Receptors, CXCR5/blood , Receptors, CXCR5/physiology
17.
Arthritis Rheumatol ; 73(12): 2327-2337, 2021 12.
Article in English | MEDLINE | ID: mdl-34105308

ABSTRACT

OBJECTIVE: Macrophages mediate inflammation, angiogenesis, and tissue destruction in giant cell arteritis (GCA). Serum levels of the macrophage-associated protein YKL-40 (chitinase 3-like protein 1), previously linked to angiogenesis and tissue remodeling, remain elevated in GCA despite glucocorticoid treatment. This study was undertaken to investigate the contribution of YKL-40 to vasculopathy in GCA. METHODS: Immunohistochemistry was performed on GCA temporal artery biopsy specimens (n = 12) and aortas (n = 10) for detection of YKL-40, its receptor interleukin-13 receptor α2 (IL-13Rα2), macrophage markers PU.1 and CD206, and the tissue-destructive protein matrix metalloproteinase 9 (MMP-9). Ten noninflamed temporal artery biopsy specimens served as controls. In vitro experiments with granulocyte-macrophage colony-stimulating factor (GM-CSF)- or macrophage colony-stimulating factor (M-CSF)-skewed monocyte-derived macrophages were conducted to study the dynamics of YKL-40 production. Next, small interfering RNA-mediated knockdown of YKL-40 in GM-CSF-skewed macrophages was performed to study its effect on MMP-9 production. Finally, the angiogenic potential of YKL-40 was investigated by tube formation experiments using human microvascular endothelial cells (HMVECs). RESULTS: YKL-40 was abundantly expressed by a CD206+MMP-9+ macrophage subset in inflamed temporal arteries and aortas. GM-CSF-skewed macrophages from GCA patients, but not healthy controls, released significantly higher levels of YKL-40 compared to M-CSF-skewed macrophages (P = 0.039). In inflamed temporal arteries, IL-13Rα2 was expressed by macrophages and endothelial cells. Functionally, knockdown of YKL-40 led to a 10-50% reduction in MMP-9 production by macrophages, whereas exposure of HMVECS to YKL-40 led to significantly increased tube formation. CONCLUSION: In GCA, a GM-CSF-skewed, CD206+MMP-9+ macrophage subset expresses high levels of YKL-40 which may stimulate tissue destruction and angiogenesis through IL-13Rα2 signaling. Targeting YKL-40 or GM-CSF may inhibit macrophages that are currently insufficiently suppressed by glucocorticoids.


Subject(s)
Chitinase-3-Like Protein 1/metabolism , Giant Cell Arteritis/pathology , Interleukin-13 Receptor alpha2 Subunit/metabolism , Macrophages/pathology , Neovascularization, Pathologic/pathology , Temporal Arteries/pathology , Aorta/metabolism , Aorta/pathology , Giant Cell Arteritis/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Humans , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Matrix Metalloproteinase 9/metabolism , Neovascularization, Pathologic/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Temporal Arteries/metabolism
18.
Front Immunol ; 12: 654109, 2021.
Article in English | MEDLINE | ID: mdl-33815414

ABSTRACT

Vasculitis refers to inflammation of blood vessels and can cause a variety of serious complications depending on which vessels are affected. Two different forms of vasculitis are Giant Cell Arteritis (GCA) and Granulomatosis with Polyangiitis (GPA). GCA is the most common form of vasculitis in adults affecting the large arteries and can lead to visual impairment and development of aneurysms. GPA affects small- and medium-sized blood vessels predominantly in the lungs and kidneys resulting in organ failure. Both diseases can potentially be fatal. Although the pathogenesis of GCA and GPA are incompletely understood, a prominent role for CD4+ T cells has been implicated in both diseases. More recently, the role of CD8+ T cells has gained renewed interest. CD8+ T cells are important players in the adaptive immune response against intracellular microorganisms. After a general introduction on the different forms of vasculitis and their association with infections and CD8+ T cells, we review the current knowledge on CD8+ T-cell involvement in the immunopathogenesis of GCA and GPA focusing on phenotypic and functional features of circulating and lesional CD8+ T cells. Furthermore, we discuss to which extent aging is associated with CD8+ T-cell phenotype and function in GCA and GPA.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Disease Susceptibility , Giant Cell Arteritis/etiology , Giant Cell Arteritis/metabolism , Granulomatosis with Polyangiitis/etiology , Granulomatosis with Polyangiitis/metabolism , Aging , Biomarkers , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Organ Specificity/immunology , Phenotype , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
19.
Immun Ageing ; 17(1): 32, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33292359

ABSTRACT

BACKGROUND: Immune checkpoints are crucial molecules in maintaining a proper immune balance. Even though age and sex are known to have effects on the immune system, the interplay between age, sex and immune checkpoint expression by T cells is not known. The aim of this study was to determine whether age and sex affect immune checkpoint expression by T cells and if age and sex affect the kinetics of immune checkpoint expression following ex vivo stimulation. In this study, whole blood samples of 20 healthy young adults (YA, 9 males and 11 females) and 20 healthy older adults (OA, 9 males and 11 females) were stained for lymphocyte lineage markers and immune checkpoints and frequencies of CD28+, PD-1+, VISTA+ and CD40L+ T cells were determined. Immune checkpoint expression kinetics were studied following ex vivo anti-CD3/anti-CD28 stimulation of T cells from young and older healthy adults. RESULTS: We report an age-associated increase of CD40L + CD4+ and CD40L + CD8+ T-cell frequencies, whereas CD40+ B-cell frequencies were decreased in older adults, suggesting modulation of the CD40L-CD40 interaction with age. Immune checkpoint expression kinetics revealed differences in magnitude between CD4+ and CD8+ T cells independent of age and sex. Further analysis of CD4+ T-cell subsets revealed an age-associated decrease of especially PD-1 + CD4+ memory T cells which tracked with the female sex. CONCLUSION: Collectively, our results demonstrate that both age and sex modulate expression of immune checkpoints by human T cells. These findings may have implications for optimising vaccination and immune checkpoint immunotherapy and move the field towards precision medicine in the management of older patient groups.

20.
Clin Transl Immunology ; 9(10): e1193, 2020.
Article in English | MEDLINE | ID: mdl-33133599

ABSTRACT

OBJECTIVES: Cytomegalovirus infection is thought to affect the immune system and to impact general health during ageing. Higher CMV-specific antibody levels in the elderly are generally assumed to reflect experienced viral reactivation during life. Furthermore, high levels of terminally differentiated and CMV-specific T cells are hallmarks of CMV infection, which are thought to expand over time, a process also referred to as memory inflation. METHODS: We studied CMV-specific antibody levels over ~ 27 years in 268 individuals (aged 60-89 years at study endpoint), and to link duration of CMV infection to T-cell numbers, CMV-specific T-cell functions, frailty and cardiovascular disease at study endpoint. RESULTS: In our study, 136/268 individuals were long-term CMV seropositive and 19 seroconverted during follow-up (seroconversion rate: 0.56%/year). CMV-specific antibody levels increased slightly over time. However, we did not find an association between duration of CMV infection and CMV-specific antibody levels at study endpoint. No clear association between duration of CMV infection and the size and function of the memory T-cell pool was observed. Elevated CMV-specific antibody levels were associated with the prevalence of cardiovascular disease but not with frailty. Age at CMV seroconversion was positively associated with CMV-specific antibody levels, memory CD4+ T-cell numbers and frailty. CONCLUSION: Cytomegalovirus-specific memory T cells develop shortly after CMV seroconversion but do not seem to further increase over time. Age-related effects other than duration of CMV infection seem to contribute to CMV-induced changes in the immune system. Although CMV-specific immunity is not evidently linked to frailty, it tends to associate with higher prevalence of cardiovascular disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...