Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Lett Appl Microbiol ; 73(5): 658-671, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34426983

ABSTRACT

Burkholderia sp. Nafp2/4-1b (=SARCC-3049) is a plant growth-promoting rhizobacteria (PGPR) initially isolated from the rhizosphere of pristine grassland in South Africa, and its ability to enhance growth was previously evaluated on maize (Zea mays L.). Here, the bacterium was tested with the aim of investigating its role in improving the nodulation and growth of the forage legume lucerne (Medicago sativa L.) when it is co-inoculated with the rhizobial symbionts of this legume in the glasshouse. When the co-inoculation resulted in a statistically significant (P = 0·05) increase in the number of nodules and improved plant biomass compared with single inoculation, we sequenced and analysed its genome to gain a better understanding of the genetic determinants responsible for the observed PGPR traits. The Illumina HiSeq 2500-sequenced genome resulted in 92 scaffolds, with an N50 of 322 407 bp, a total draft genome size of 7 788 045 bp and GC content of 66·2%. Analysis of the genome sequence confirmed the presence of a number of essential genes that code for various PGPR traits. The main plant beneficial genes associated with PGPR traits in Burkholderia sp. Nafp2/4-1b include pyoverdine siderophores biosynthesis gene (PvdF); acdS that codes for 1-aminocyclopropane-1-carboxylate (ACC) deaminase; the tryptophan synthase genes involved in auxin biosynthesis (TSA1, TSB1) and the pqqABCDE operon related to phosphate solubilization. This study generated valuable information on the potential of the PGPR Burkholderia sp. strain Nafp2/4-1b as an effective commercial inoculant, which warrants further formulation and field application studies before developing it into a low cost, environmentally safe and effective biofertilizer.


Subject(s)
Burkholderia , Burkholderia/genetics , Germ-Free Life , Plant Development , Plant Roots , Sequence Analysis , Soil Microbiology
2.
Data Brief ; 32: 106288, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32984478

ABSTRACT

Cyclopia spp., commonly referred to as honeybush due to the honey scented flowers, are indigenous legumes mainly growing in the Cape Floristic Region of the Western Cape, South Africa. Dozens of species, including Cyclopia intermedia, C. subternata, C. plicata, C. genistoides are used to make the well-known, popular and widely enjoyed beverage called 'honeybush tea'. In the past, most rhizosphere microbial studies associated with Cyclopia spp. focused mainly on the taxonomy and diversity of the root nodule associated symbiotic nitrogen fixing rhizobia. The work presented here is the first report on the microbial and functional diversity of rhizosphere microbiome associated with Cyclopia intermedia. Metagenomic shotgun sequencing was performed on the rhizosphere soil sample collected from this Cyclopia sp. using illumina Hiseq 2500 platform which resulted in an α- diversity of 312 species. Analysis of the metagenome sequence using the Metagenomic analysis server (MG-RAST) indicated that bacteria constitute the dominant domain followed by Eukaryota, Archaea and other sequences derived from fungi and viruses. Functional diversity of the metagenome based on analysis using the Cluster Orthologous Group (COG) method showed metabolism as the most important function in the community. The raw sequence data is uploaded in FASTQ format on MG-RAST server with ID mgm4855911.3 which can be accessed at http://www.mg-rast.org/linkin.cgi?project=mgp90368. The data on the microbial and functional diversity of the rhizosphere community of Cyclopia intermedia generates a baseline information about the microbial ecology of this indigenous legume. The microbial profile data can also be used as indicators of soil health characteristic of the rhizosphere of this important legume.

SELECTION OF CITATIONS
SEARCH DETAIL
...