Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(5): 053602, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38364136

ABSTRACT

The interaction of a resonant light field with a quantum two-level system is of key interest both for fundamental quantum optics and quantum technological applications employing resonant excitation. While emission under resonant continuous-wave excitation has been well studied, the more complex emission spectrum of dynamically dressed states-a quantum two-level system driven by resonant pulsed excitation-has so far been investigated in detail only theoretically. Here, we present the first experimental observation of the complete resonance fluorescence emission spectrum of a single quantum two-level system, in the form of an excitonic transition in a semiconductor quantum dot, driven by finite Gaussian pulses. We observe multiple emerging sidebands as predicted by theory, with an increase of their number and spectral detuning with excitation pulse intensity and a dependence of their spectral shape and intensity on the pulse length. Detuning-dependent measurements provide additional insights into the emission features. The experimental results are in excellent agreement with theoretical calculations of the emission spectra, corroborating our findings.

2.
ACS Photonics ; 10(5): 1504-1511, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37215325

ABSTRACT

Semiconductor quantum dot molecules are considered promising candidates for quantum technological applications due to their wide tunability of optical properties and coverage of different energy scales associated with charge and spin physics. While previous works have studied the tunnel-coupling of the different excitonic charge complexes shared by the two quantum dots by conventional optical spectroscopy, we here report on the first demonstration of a coherently controlled interdot tunnel-coupling focusing on the quantum coherence of the optically active trion transitions. We employ ultrafast four-wave mixing spectroscopy to resonantly generate a quantum coherence in one trion complex, transfer it to and probe it in another trion configuration. With the help of theoretical modeling on different levels of complexity, we give an instructive explanation of the underlying coupling mechanism and dynamical processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...