Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Reconstr Microsurg ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38547908

ABSTRACT

BACKGROUND: While substantial anatomical study has been pursued throughout the human body, anatomical study of the human lymphatic system remains in its infancy. For microsurgeons specializing in lymphatic surgery, a better command of lymphatic anatomy is needed to further our ability to offer surgical interventions with precision. In an effort to facilitate the dissemination and advancement of human lymphatic anatomy knowledge, our teams worked together to create a map. The aim of this paper is to present our experience in mapping the anatomy of the human lymphatic system. METHODS: Three steps were followed to develop a modern map of the human lymphatic system: (1) identifying our source material, which was "Anatomy of the human lymphatic system," published by Rouvière and Tobias (1938), (2) choosing a modern platform, the Miro Mind Map software, to integrate the source material, and (3) transitioning our modern platform into The Human BioMolecular Atlas Program (HuBMAP). RESULTS: The map of lymphatic anatomy based on the Rouvière textbook contained over 900 data points. Specifically, the map contained 404 channels, pathways, or trunks and 309 lymph node groups. Additionally, lymphatic drainage from 165 distinct anatomical regions were identified and integrated into the map. The map is being integrated into HuBMAP by creating a standard data format called an Anatomical Structures, Cell Types, plus Biomarkers table for the lymphatic vasculature, which is currently in the process of construction. CONCLUSION: Through a collaborative effort, we have developed a unified and centralized source for lymphatic anatomy knowledge available to the entire scientific community. We believe this resource will ultimately advance our knowledge of human lymphatic anatomy while simultaneously highlighting gaps for future research. Advancements in lymphatic anatomy knowledge will be critical for lymphatic surgeons to further refine surgical indications and operative approaches.

2.
Sci Data ; 10(1): 452, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468503

ABSTRACT

More than 150 scientists from 17 consortia are collaborating on an international project to build a Human Reference Atlas, which maps all 37 trillion cells in the healthy adult human body. The initial release of this atlas provided hierarchical lists of the anatomical structures, cell types, and biomarkers in 11 organs. Here, we describe the methods we used as part of this initiative to build the first open, computer-readable, and comprehensive database of the adult human blood vasculature, called the Human Reference Atlas-Vasculature Common Coordinate Framework (HRA-VCCF). It includes 993 vessels and their branching connections, 10 cell types, and 10 biomarkers. With this paper we are releasing additional details on vessel types and subtypes, branching sequence, anastomoses, portal systems, microvasculature, functional tissue units, mappings to regions vessels supply or drain, geometric properties of vessels, and links to 3D reference objects. Future versions will add variants and connections to the lymph vasculature; and, it will iteratively expand and improve the database as additional experimental data become available through the participating consortia.


Subject(s)
Biomarkers , Adult , Humans
3.
Nat Cell Biol ; 23(11): 1117-1128, 2021 11.
Article in English | MEDLINE | ID: mdl-34750582

ABSTRACT

The Human Reference Atlas (HRA) aims to map all of the cells of the human body to advance biomedical research and clinical practice. This Perspective presents collaborative work by members of 16 international consortia on two essential and interlinked parts of the HRA: (1) three-dimensional representations of anatomy that are linked to (2) tables that name and interlink major anatomical structures, cell types, plus biomarkers (ASCT+B). We discuss four examples that demonstrate the practical utility of the HRA.


Subject(s)
Atlases as Topic , Cell Biology , Cell Lineage , Cells/classification , Single-Cell Analysis , Biomarkers/metabolism , Cells/metabolism , Cells/pathology , Computer Graphics , Disease , Genomics , High-Throughput Nucleotide Sequencing , Humans , Phenotype , Transcriptome
4.
J Med Virol ; 93(1): 409-415, 2021 01.
Article in English | MEDLINE | ID: mdl-32589756

ABSTRACT

BACKGROUND: Identification of risk factors of severe coronavirus disease 2019 (COVID-19) is critical for improving therapies and understanding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis. We analyzed 184 patients hospitalized for COVID-19 in Livingston, New Jersey for clinical characteristics associated with severe disease. The majority of patients with COVID-19 had diabetes mellitus (DM) (62.0%), Pre-DM (23.9%) with elevated fasting blood glucose (FBG), or a body mass index >30 with normal hemoglobin A1c (HbA1C) (4.3%). SARS-CoV-2 infection was associated with new and persistent hyperglycemia in 29 patients, including several with normal HbA1C levels. Forty-four patients required intubation, which occurred significantly more often in patients with DM as compared with non-diabetics. Severe COVID-19 occurs in the presence of impaired glucose metabolism in patients, including those with DM, preDM, and obesity. COVID-19 is associated with elevated FBG and several patients presented with new onset DM or in DKA. The association of dysregulated glucose metabolism and severe COVID-19 suggests that SARS-CoV-2 pathogenesis involves a novel interplay with glucose metabolism. Exploration of pathways by which SARS-CoV-2 interacts glucose metabolism is critical for understanding disease pathogenesis and developing therapies.


Subject(s)
COVID-19/complications , Diabetes Complications/metabolism , Glucose/metabolism , Obesity/metabolism , Prediabetic State/metabolism , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Aging , Blood Glucose , Body Mass Index , COVID-19/metabolism , Female , Glycated Hemoglobin , Humans , Male , Middle Aged , Obesity/complications , Prediabetic State/complications , Young Adult
5.
Kidney Int ; 98(6): 1502-1518, 2020 12.
Article in English | MEDLINE | ID: mdl-33038424

ABSTRACT

COVID-19 morbidity and mortality are increased via unknown mechanisms in patients with diabetes and kidney disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) for entry into host cells. Because ACE2 is a susceptibility factor for infection, we investigated how diabetic kidney disease and medications alter ACE2 receptor expression in kidneys. Single cell RNA profiling of kidney biopsies from healthy living donors and patients with diabetic kidney disease revealed ACE2 expression primarily in proximal tubular epithelial cells. This cell-specific localization was confirmed by in situ hybridization. ACE2 expression levels were unaltered by exposures to renin-angiotensin-aldosterone system inhibitors in diabetic kidney disease. Bayesian integrative analysis of a large compendium of public -omics datasets identified molecular network modules induced in ACE2-expressing proximal tubular epithelial cells in diabetic kidney disease (searchable at hb.flatironinstitute.org/covid-kidney) that were linked to viral entry, immune activation, endomembrane reorganization, and RNA processing. The diabetic kidney disease ACE2-positive proximal tubular epithelial cell module overlapped with expression patterns seen in SARS-CoV-2-infected cells. Similar cellular programs were seen in ACE2-positive proximal tubular epithelial cells obtained from urine samples of 13 hospitalized patients with COVID-19, suggesting a consistent ACE2-coregulated proximal tubular epithelial cell expression program that may interact with the SARS-CoV-2 infection processes. Thus SARS-CoV-2 receptor networks can seed further research into risk stratification and therapeutic strategies for COVID-19-related kidney damage.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Diabetic Nephropathies/metabolism , Kidney Tubules, Proximal/metabolism , SARS-CoV-2/metabolism , Adult , Aged , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , COVID-19/complications , COVID-19/virology , Case-Control Studies , Diabetic Nephropathies/drug therapy , Female , Gene Expression Profiling , Gene Regulatory Networks , Host-Pathogen Interactions , Humans , Kidney Tubules, Proximal/drug effects , Male , Middle Aged
6.
bioRxiv ; 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32587965

ABSTRACT

A mechanistic understanding of the SARS-CoV-2 viral replication cycle is essential to develop new therapies for the COVID-19 global health crisis. In this study, we show that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with the viral genome, and propose a model of viral packaging through LLPS. N-protein condenses with specific RNA sequences in the first 1000 nts (5'-End) under physiological conditions and is enhanced at human upper airway temperatures. N-protein condensates exclude non-packaged RNA sequences. We comprehensively map sites bound by N-protein in the 5'-End and find preferences for single-stranded RNA flanked by stable structured elements. Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules thus presenting screenable processes for identifying antiviral compounds effective against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...