Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 16(8): 11692-11707, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35760395

ABSTRACT

Nanocrystal assembly into ordered structures provides mesostructural functional materials with a precise control that starts at the atomic scale. However, the lack of understanding on the self-assembly itself plus the poor structural integrity of the resulting supercrystalline materials still limits their application into engineered materials and devices. Surface functionalization of the nanobuilding blocks with organic ligands can be used not only as a means to control the interparticle interactions during self-assembly but also as a reactive platform to further strengthen the final material via ligand cross-linking. Here, we explore the influence of the ligands on superlattice formation and during cross-linking via thermal annealing. We elucidate the effect of the surface functionalization on the nanostructure during self-assembly and show how the ligand-promoted superlattice changes subsequently alter the cross-linking behavior. By gaining further insights on the chemical species derived from the thermally activated cross-linking and its effect in the overall mechanical response, we identify an oxidative radical polymerization as the main mechanism responsible for the ligand cross-linking. In the cascade of reactions occurring during the surface-ligands polymerization, the nanocrystal core material plays a catalytic role, being strongly affected by the anchoring group of the surface ligands. Ultimately, we demonstrate how the found mechanistic insights can be used to adjust the mechanical and nanostructural properties of the obtained nanocomposites. These results enable engineering supercrystalline nanocomposites with improved cohesion while preserving their characteristic nanostructure, which is required to achieve the collective properties for broad functional applications.

2.
Nano Lett ; 21(7): 2891-2897, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33749275

ABSTRACT

With the ever-expanding functional applications of supercrystalline nanocomposites (a relatively new category of materials consisting of organically functionalized nanoparticles arranged into periodic structures), it becomes necessary to ensure their structural stability and understand their deformation and failure mechanisms. Inducing the cross-linking of the functionalizing organic ligands, for instance, leads to a remarkable enhancement of the nanocomposites' mechanical properties. It is however still unknown how the cross-linked organic phase redistributes applied loads, how the supercrystalline lattice accommodates the imposed deformations, and thus in general what phenomena govern the overall material's mechanical response. This work elucidates these aspects for cross-linked supercrystalline nanocomposites through an in situ small- and wide-angle X-ray scattering study combined with uniaxial pressing. Because of this loading condition, it emerges that the cross-linked ligands effectively carry and distribute loads homogeneously throughout the nanocomposites, while the superlattice deforms via rotation, slip, and local defects generation.

3.
Molecules ; 25(20)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086563

ABSTRACT

Multiscale ceramic-organic supercrystalline nanocomposites with two levels of hierarchy have been developed via self-assembly with tailored content of the organic phase. These nanocomposites consist of organically functionalized ceramic nanoparticles forming supercrystalline micron-sized grains, which are in turn embedded in an organic-rich matrix. By applying an additional heat treatment step at mild temperatures (250-350 °C), the mechanical properties of the hierarchical nanocomposites are here enhanced. The heat treatment leads to partial removal and crosslinking of the organic phase, minimizing the volume occupied by the nanocomposites' soft phase and triggering the formation of covalent bonds through the organic ligands interfacing the ceramic nanoparticles. Elastic modulus and hardness up to 45 and 2.5 GPa are attained, while the hierarchical microstructure is preserved. The presence of an organic phase between the supercrystalline grains provides a toughening effect, by curbing indentation-induced cracks. A mapping of the nanocomposites' mechanical properties reveals the presence of multiple microstructural features and how they evolve with heat treatment temperature. A comparison with non-hierarchical, homogeneous supercrystalline nanocomposites with lower organic content confirms how the hierarchy-inducing organic excess results in toughening, while maintaining the beneficial effects of crosslinking on the materials' stiffness and hardness.


Subject(s)
Ceramics/chemistry , Mechanical Phenomena , Nanocomposites/chemistry , Zirconium/chemistry , Elastic Modulus , Hardness , Materials Testing , Temperature
4.
Langmuir ; 35(43): 13893-13903, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31580678

ABSTRACT

Supercrystalline nanocomposite materials with micromechanical properties approaching those of nacre or similar structural biomaterials can be produced by self-assembly of organically modified nanoparticles and further strengthened by cross-linking. The strengthening of these nanocomposites is controlled via thermal treatment, which promotes the formation of covalent bonds between interdigitated ligands on the nanoparticle surface. In this work, it is shown how the extent of the mechanical properties enhancement can be controlled by the solvent used during the self-assembly step. We find that the resulting mechanical properties correlate with the Hansen solubility parameters of the solvents and ligands used for the supercrystal assembly: the hardness and elastic modulus decrease as the Hansen solubility parameter of the solvent approaches the Hansen solubility parameter of the ligands that stabilize the nanoparticles. Moreover, it is shown that self-assembled supercrystals that are subsequently uniaxially pressed can deform up to 6 %. The extent of this deformation is also closely related to the solvent used during the self-assembly step. These results indicate that the conformation and arrangement of the organic ligands on the nanoparticle surface not only control the self-assembly itself but also influence the mechanical properties of the resulting supercrystalline material. The Hansen solubility parameters may therefore serve as a tool to predict what solvents and ligands should be used to obtain supercrystalline materials with good mechanical properties.

5.
Sci Rep ; 9(1): 3435, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837545

ABSTRACT

Biomaterials often display outstanding combinations of mechanical properties thanks to their hierarchical structuring, which occurs through a dynamically and biologically controlled growth and self-assembly of their main constituents, typically mineral and protein. However, it is still challenging to obtain this ordered multiscale structural organization in synthetic 3D-nanocomposite materials. Herein, we report a new bottom-up approach for the synthesis of macroscale hierarchical nanocomposite materials in a single step. By controlling the content of organic phase during the self-assembly of monodisperse organically-modified nanoparticles (iron oxide with oleyl phosphate), either purely supercrystalline or hierarchically structured supercrystalline nanocomposite materials are obtained. Beyond a critical concentration of organic phase, a hierarchical material is consistently formed. In such a hierarchical material, individual organically-modified ceramic nanoparticles (Level 0) self-assemble into supercrystals in face-centered cubic superlattices (Level 1), which in turn form granules of up to hundreds of micrometers (Level 2). These micrometric granules are the constituents of the final mm-sized material. This approach demonstrates that the local concentration of organic phase and nano-building blocks during self-assembly controls the final material's microstructure, and thus enables the fine-tuning of inorganic-organic nanocomposites' mechanical behavior, paving the way towards the design of novel high-performance structural materials.

6.
Nanoscale Adv ; 1(8): 3139-3150, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-36133595

ABSTRACT

Nanostructured iron-oxide based materials with tailored mechanical and magnetic behavior are produced in bulk form. By applying ultra-fast heating routines via spark plasma sintering (SPS) to supercrystalline pellets, materials with an enhanced combination of elastic modulus, hardness and saturation magnetization are achieved. Supercrystallinity - namely the arrangement of the constituent nanoparticles into periodic structures - is achieved through self-assembly of the organically-functionalized iron oxide nanoparticles. The optimization of the following SPS regime allows the control of organics' removal, necking, iron oxide phase transformations and nano-grain size retention, and thus the fine-tuning of both mechanical properties and magnetic response, up until the production of bulk mm-size superparamagnetic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...