Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(17): 7263-7267, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38618749

ABSTRACT

New organophosphate complexes [Ln(dippH)3(dippH2)3]·(H2O)6, (Ln = Dy, Yb and Y; dippH2 = 2,6-diisopropylphenyl phosphate), displaying octahedral coordination geometry around the metal ion, exhibit unusual slow relaxation of magnetisation, which is investigated through experimental studies and ab initio CASSCF calculations.

2.
Dalton Trans ; 52(26): 8943-8955, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37317701

ABSTRACT

Single-ion magnets (SIMs) have attracted wide attention in recent years. Despite tremendous progress in late lanthanide SIMs, reports on early lanthanides exhibiting SIM characteristics are scarce. A series of five novel 18-crown-6 encapsulated mononuclear early lanthanide(III) organophosphates, [{(18-crown-6)Ln(dippH)3}{(18-crown-6)Ln(dippH)2(dippH2)}]·[I3] [Ln = Ce (1), Pr (2), Nd (3)] and [{Ln(18-crown-6)(dippH)2(H2O)}·{I3}] [Ln = Sm (4) and Eu (5)], have been synthesised in the present study. 18-crown-6 coordinates to Ln(III) ions in an equatorial position while the axial positions are occupied by either three phosphate moieties as in 1-3 or two phosphate moieties and one water molecule as in 4 and 5, resulting in a muffin-shaped coordination geometry around the Ln(III) centres. Magnetic susceptibility measurements reveal that Ce and Nd complexes are field-induced single-ion magnets with significant barrier heights. Furthermore, the ab initio CASSCF/RASSI-SO/SINGLE_ANISO calculations on complexes 1 and 3 reveal significant QTM in the ground state rationalising the field-induced single-ion magnetism behaviour of these complexes.

3.
Inorg Chem ; 62(21): 8435-8441, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37171409

ABSTRACT

Gadolinium is a special case in spectroscopy because of the near isotropic nature of the 4f7 configuration of the +3 oxidation state. Gd3+ complexes have been studied in several symmetries to understand the underlying mechanisms of the ground state splitting. The abundance of information in Gd3+ spectra can be used as a probe for properties of the other rare earth ions in the same complexes. In this work, the zero-field splitting (ZFS) of a series of Gd3+ pentagonal bipyramidal complexes of the form [GdX1X2(Leq)5]n+ [n = 1, X = axial ligands: Cl-, -OtBu, -OArF5 or n = 3, X = tBuPO(NHiPr)2, Leq = equatorial ligand: Py, THF or H2O] with near fivefold symmetry axes along X1-Gd-X2 was investigated. The ZFS parameters were determined by fitting of room-temperature continuous wave electron paramagnetic resonance (EPR) spectra (at X-, K-, and Q-band) to a spin Hamiltonian incorporating extended Stevens operators compatible with C5 symmetry. Examination of the acquired parameters led to the conclusion that the ZFS is dominated by the B20 term and that the magnitude of B20 is almost entirely dependent on, and inversely proportional to, the donor strength of the axial ligands. Surveying the continuous shape measure and the X1-Gd-X2 angle of the complexes showed that there is some correlation between the proximity of each complex to D5h symmetry and the magnitude of the B65 parameter, but that the deformation of the X1-Gd-X2 angle is more significant than other distortions. Finally, the magnitude of B20 was found to be inversely proportional to the thermal barrier for the reversal of the magnetic moment (Ueff) of the corresponding isostructural Dy3+ complexes.

4.
Angew Chem Int Ed Engl ; 60(22): 12323-12327, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33660368

ABSTRACT

Arylene diimide derived ambient organic phosphors are seldom reported despite their potential structural characteristics to facilitate the triplet harvesting. In this context, highly efficient room temperature phosphorescence (RTP) from simple, heavy-atom substituted pyromellitic diimide derivatives in amorphous matrix and crystalline state is reported here. Multiple intermolecular halogen bonding interactions among these phosphors, such as halogen-carbonyl and halogen-π resulted in the modulation of phosphorescence, cyan emission from monomeric state and orange-red emission from its aggregated state, to yield twin RTP emission. Remarkably, the air-stable phosphorescence presented here own one of the highest quantum yield (≈48 %) among various organics in orange-red emissive region.

5.
Chem Commun (Camb) ; 56(79): 11879-11882, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33021294

ABSTRACT

The effect of systematic modification of the axial ligand field X on Ueff values in Yb(iii)-based SIMs, [Yb(Ph3PO)4X2]X' (X, X' = NO3 (1), OTf (2) and X = I/Br/Cl; X' = I3 (3)), whose equatorial Ph3PO ligation remains unchanged, has been investigated. Combined magnetic studies coupled with ab initio calculations reveal weakening of the axial ligand fields leading to the increase in the energy barrier, apart from suggesting the operation of different relaxation pathways.

6.
Inorg Chem ; 59(1): 717-729, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31829583

ABSTRACT

Single-ion magnets based on lanthanide ions in pseudo-D5h symmetry have gained much attention in recent years as they are reported to possess a large blocking temperature and a large barrier for magnetization reversal. Magneto-structural correlations reveal that the axial O-Ln-O angle is an important parameter to control the barrier, and while it can be fine-tuned by chemical modification, an alternative would be to utilize hydrostatic pressure. Herein, we report the crystal structures and static magnetic properties of two air-stable isostructural lanthanide SIMs under applied pressures. The complexes exhibit pseudo-D5h symmetry around the Ln(III)-ion (Ln = Dy or Ho), which coordinates to five equatorial water molecules and two large neutral phosphonic diamide ligands along the axial direction. High-pressure single-crystal X-ray diffraction experiments revealed two phase-transitions and an increasing deviation from D5h-symmetry between ambient pressure and 3.6 GPa. High-pressure direct-current magnetic measurements of the Dy(III) compound showed large steps in the hysteresis loops near zero field, indicative of quantum tunneling of magnetization (QTM). These steps grow in size with increasing pressure, suggesting that QTM becomes progressively more active, which correlates well with the pressure-induced increased overall deviation from pseudo-D5h symmetry and decreasing axial O-Dy-O angle. A strong temperature dependence of the step size is seen at 0.3 GPa, which shows that the SMM character persists even at this pressure. To understand the origin of significant variation in the tunneling probability upon pressure, we performed a range of ab initio calculations based on the CASSCF/RASSI-SO/SINGLE_ANISO method on both Dy and Ho complexes. From the energies and magnetic anisotropy of the mJ sublevels, we find a complex variation of the energy barrier with pressure, and using a constructed geometrical parameter, R, taking into account changes in both bond angles and distances, we link the magnetic properties to the first coordination sphere of the molecules.

7.
Dalton Trans ; 48(42): 15928-15935, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31513208

ABSTRACT

Herein, we present monometallic Ln(iii) complexes [L3Ln(NO3)3] [where Ln = Ce (1) and La (2)] assembled from a simple reaction of the respective lanthanide nitrate hydrate and a bulky phosphonic diamide tBuPO(NHiPr)2 ligand (L), where complex 1 behaves as a single-ion single-electron magnet under a small applied magnetic field. The Ce(iii) ion occupies a nine-coordinate distorted muffin-like coordination environment. The combination of direct and Raman process dominates the relaxation dynamics in 1 under the applied dc field. The low-temperature measurements performed with oriented crystals on a micro-SQUID setup exhibits strong tunnelling at zero-field, consistent with the theoretical results where strong mixing of the ground state with higher excited mJ levels is detected and also throws additional insights on the relaxation dynamics of 1. Ab initio calculations have been performed to understand the origin of anisotropy and models have been proposed for future directions.

8.
Chem Commun (Camb) ; 55(55): 7994-7997, 2019 Jul 14.
Article in English | MEDLINE | ID: mdl-31225572

ABSTRACT

Modulation of a functional group on the distal part of a phosphate ester has been prudently exploited to selectively switch between the formation of D4R SBUs and 3-D framework structures. While amino substitution at the para-position of an aryl phosphate results in the isolation of tetra-amino functionalized discrete D4R zinc phosphate or its 4-connected 3-D framework, the introduction of an acetylamino substituent leads to a single-step assembly of a rare eight-connected 3-D framework solid.

9.
Dalton Trans ; 46(26): 8664-8672, 2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28650057

ABSTRACT

A simple, facile and one-pot route for preparing SnO2 nanoclusters embedded on a mesoporous Sn(iv) organophosphonate (MSnP) framework is described. Reaction of SnCl4·5H2O with a flexible tris-phosphonic acid, mesityl-1,3,5-tris(methylenephosphonic acid), in the presence of a surfactant under hydrothermal conditions produced the desired nanocomposite, SnO2@MSnP. Analytical, spectroscopic and microscopic studies establish that SnO2@MSnP composite is comprised of SnO2 nanoparticles of an average size of 5 nm evenly and abundantly dispersed over the MSnP framework. The mesoporous metal organophosphonate support significantly augments the catalytic efficacy and vapor sensitivity of SnO2 nanoparticles. The catalytic efficiency of SnO2@MSnP was tested for two acid-catalyzed reactions: deoximation reaction and esterification of fatty acids. SnO2@MSnP exhibits remarkable sensitivity towards ammonia and acetone vapors at near room temperature and under open atmospheric conditions. The present method represents an important step towards preparation of mesoporous metal organophosphonate supported metal oxide nanoclusters and hence offers easy access to functional metal oxide based nanocomposites.

SELECTION OF CITATIONS
SEARCH DETAIL
...