Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Fitoterapia ; 173: 105803, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38171388

ABSTRACT

Type 2 diabetes milletus (T2DM) is a complex multifaceted disorder characterized by insulin resistance in skeletal muscle. Phyllanthus niruri L. is well reported sub-tropical therapeutically beneficial ayurvedic medicinal plant from Euphorbiaceae family used in various body ailments such as metabolic disorder including diabetes. The present study emphasizes on the therapeutic potential of Phyllanthus niruri L. and its phytochemical(s) against insulin resistance conditions and impaired antioxidant activity thereby aiding as an anti-hyperglycemic agent in targeting T2DM. Three compounds were isolated from the most active ethyl acetate fraction namely compound 1 as 1-O-galloyl-6-O-luteoyl-ß-D-glucoside, compound 2 as brevifolincarboxylic acid and compound 3 as ricinoleic acid. Compounds 1 and 2, the two polyphenols enhanced the uptake of glucose and inhibited ROS levels in palmitate induced C2C12 myotubes. PNEAF showed the potent enhancement of glucose uptake in palmitate-induced insulin resistance condition in C2C12 myotubes and significant ROS inhibition was observed in skeletal muscle cell line. PNEAF treated IR C2C12 myotubes and STZ induced Wistar rats elevated SIRT1, PGC1-α signaling cascade through phosphorylation of AMPK and GLUT4 translocation resulting in insulin sensitization. Our study revealed an insight into the efficacy of marker compounds isolated from P. niruri and its enriched ethyl acetate fraction as ROS scavenging agent and helps in attenuating insulin resistance condition in C2C12 myotubes as well as in STZ induced Wistar rat by restoring glucose metabolism. Overall, this study can provide prospects for the marker-assisted development of P. niruri as a phytopharmaceutical drug for the insulin resistance related diabetic complications.


Subject(s)
Acetates , Diabetes Mellitus, Type 2 , Hyperglycemia , Insulin Resistance , Phyllanthus , Rats , Animals , Diabetes Mellitus, Type 2/drug therapy , Polyphenols/pharmacology , Polyphenols/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 1 , Rats, Wistar , Molecular Structure , Muscle Fibers, Skeletal , Insulin/metabolism , Palmitates/metabolism , Muscle, Skeletal/metabolism
2.
Sci Rep ; 13(1): 13612, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604838

ABSTRACT

In this study, we investigated whether zerumbone (ZBN), ellagic acid (ELA) and quercetin (QCT), the plant-derived components, can modulate the role of COX-3 or cytokines liable in arthritic disorder. Initially, the effect of ZBN, ELA, and QCT on inflammatory process was investigated using in-vitro models. In-silico docking and molecular dynamics study of these molecules with respective targets also corroborate with in-vitro studies. Further, the in-vivo anti-arthritic potential of these molecules in Complete Freund's adjuvant (CFA)-induced arthritic rats was confirmed. CFA increases in TNF-α and IL-1ß levels in the arthritic control animals were significantly (***p < 0.001) attenuated in the ZBN- and ELA-treated animals. CFA-induced attenuation in IL-10 levels recovered under treatment. Moreover, ELA attenuated CFA-induced upregulation of COX-3 and ZBN downregulated CFA-triggered NFκB expression in arthritic animals. The bonding patterns of zerumbone in the catalytic sites of targets provide a useful hint in designing and developing suitable derivatives that can be used as a potential drug. To our best knowledge, the first time we are reporting the role of COX-3 in the treatment of arthritic disorders which could provide a novel therapeutic approach for the treatment of inflammatory disorders.


Subject(s)
Arthritis , NF-kappa B , Animals , Rats , Arthritis/drug therapy , Cytokines , Ellagic Acid , Freund's Adjuvant , Phytochemicals/pharmacology
3.
Mol Omics ; 19(10): 787-799, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37534494

ABSTRACT

The present study evaluated the therapeutic potential of the medicinal plant Lysimachia candida Lindl. against metabolic syndrome in male SD rats fed with a high-fat high-fructose (HFHF) diet. Methanolic extract of Lysimachia candida Lindl. (250 mg kg-1 body weight p.o.) was administrated to the HFHF-fed rats daily for 20 weeks. Blood samples were collected, and blood glucose levels and relevant biochemical parameters were analysed and used for the assessment of metabolic disease phenotypes. In this study, Lysimachia candida decreased HFHF diet-induced phenotypes of metabolic syndrome, i.e., obesity, blood glucose level, hepatic triglycerides, free fatty acids, and insulin resistance. Liquid chromatography-mass spectrometry-based metabolomics was done to study the dynamics of metabolic changes in the serum during disease progression in the presence and absence of the treatment. Furthermore, multivariate data analysis approaches have been employed to identify metabolites responsible for disease progression. Lysimachia candida Lindl. plant extract restored the metabolites that are involved in the biosynthesis and degradation of amino acids, fatty acid metabolism and vitamin metabolism. Interestingly, the results depicted that the treatment with the plant extract restored the levels of acetylated amino acids and their derivatives, which are involved in the regulation of beta cell function, glucose homeostasis, insulin secretion, and metabolic syndrome phenotypes. Furthermore, we observed restoration in the levels of indole derivatives and N-acetylgalactosamine with the treatment, which indicates a cross-talk between the gut microbiome and the metabolic syndrome. Therefore, the present study revealed the potential mechanism of Lysimachia candida Lindl. extract to prevent metabolic syndrome in rats.


Subject(s)
Metabolic Syndrome , Rats , Animals , Metabolic Syndrome/drug therapy , Metabolic Syndrome/prevention & control , Blood Glucose/analysis , Blood Glucose/metabolism , Lysimachia , Fructose , Rats, Sprague-Dawley , Diet, High-Fat/adverse effects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Phenotype , Amino Acids/metabolism , Disease Progression , Candida/metabolism
4.
Org Biomol Chem ; 21(30): 6197-6204, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37477176

ABSTRACT

Halogen bonding triggered by the Lewis basic nature of acetonitrile catalyzes the site-selective C-3 triaryl methylation of indoles and N-triaryl methylation of imidazoles with trityl chlorides under catalyst-, metal-, and additive-free conditions at room temperature. This method generates a quaternary carbon centre appended to a heterocyclic moiety. UV-Vis and FT-IR analyses indicate the existence of halogen bonding which is the driving force of the reaction. This approach is suitable for a wide range of substrates, furnishing moderate to excellent yields (up to 100%) of triaryl methylated products under ambient reaction conditions. Equimolar amounts of reactants are sufficient to obtain the optimum yield and in some cases pure products can be obtained without column chromatography.

5.
3 Biotech ; 13(7): 257, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37405270

ABSTRACT

The Actinomycetia isolate, MNP32 was isolated from the Manas National Park of Assam, India, located in the Indo-Burma biodiversity hotspot region of Northeast India. Morphological observations and molecular characterization revealed its identity to be Streptomyces sp. with a 99.86% similar to Streptomyces camponoticapitis strain I4-30 through 16S rRNA gene sequencing. The strain exhibited broad-spectrum antimicrobial activity against a wide range of bacterial human pathogens including WHO-listed critical priority pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii. The ethyl acetate extract was found to disrupt the membrane of the test pathogens which was evidenced through scanning electron microscopy, membrane disruption assay and confocal microscopy. Cytotoxicity studies against CC1 hepatocytes demonstrated that EA-MNP32 had a negligible effect on cell viability. Chemical analysis of the bioactive fraction using gas chromatography-mass spectrometry (GC-MS) showed the presence of 2 major chemical compounds that include Phenol, 3,5-bis(1,1-dimethylethyl)- and [1,1'-Biphenyl]-2,3'-diol, 3,4',5,6'-tetrakis(1,1-dimethylethyl)- which have been reported to possess antimicrobial activity. The phenolic hydroxyl groups of these compounds were proposed to interact with the carbonyl group of the cytoplasmic proteins and lipids leading to destabilization and rupture of the cell membrane. These findings highlight the potential of exploring culturable actinobacteria from the microbiologically under-explored forest ecosystem of Northeast India and bioactive compounds from MNP32 which can be beneficial for future antibacterial drug development.

6.
Chem Biol Interact ; 371: 110347, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36627075

ABSTRACT

Type 2 Diabetes Mellitus (T2DM) is characterized by hepatic insulin resistance, which results in increased glucose production and reduced glycogen storage in the liver. There is no previous study in the literature that has explored the role of Xanthosine in hepatic insulin resistance. Moreover, mechanistic explanation for the beneficial effects of Xanthosine in lowering glucose production in diabetes is yet to be determined. This study for the first time investigated the beneficial effects of Tribulus terrestris (TT) and its active constituent, Xanthosine on gluconeogenesis and glycogenesis in Free Fatty Acid (FFA)-induced CC1 hepatocytes and streptozotocin (STZ)-induced Wistar rats. Xanthosine enhanced glucose uptake and decreased glucose production through phosphorylation of AMP-activated protein kinase (AMPK) and forkhead box transcription factor O1 (FoxO1), and downregulation of two rate limiting enzymes of gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) expression in FFA-induced CC1 cells. Xanthosine also prevented FFA-induced decreases in the phosphorylation of AKT/Protein kinase B, glycogen synthase kinase-3ß (GSK3ß), and increased glycogen synthase (GS) phosphorylation to increase the glycogen content in the hepatocytes. Moreover, in STZ-induced diabetic rats, oral administration of TT n-butanol fraction (TTBF) enriched with compound Xanthosine (10, 50 & 100 mg/kg body weight) improved insulin sensitivity, reduced fasting blood glucose levels, improved glucose homeostasis by reducing gluconeogenesis via AMPK/FoxO1-mediated PEPCK and G6Pase down-regulation and increasing glycogenesis via AKT/GSK3ß-mediated GS activation. Overall, Xanthosine may be developed further for treating insulin resistance and hyperglycemia in T2DM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Rats , Animals , Gluconeogenesis , AMP-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glycosides/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Rats, Wistar , Liver/metabolism , Glucose/metabolism , Xanthines/pharmacology , Glycogen/metabolism , Homeostasis
7.
Free Radic Biol Med ; 197: 23-45, 2023 03.
Article in English | MEDLINE | ID: mdl-36669545

ABSTRACT

Neurodegenerative disorders (ND), associated with the progressive loss of neurons, oxidative stress-mediated production of reactive oxygen species (ROS), and mitochondrial dysfunction, can be treated with synthetic peptides possessing innate neurotrophic effects and neuroprotective activity. Computational analysis of two small synthetic peptides (trideca-neuropeptide, TNP; heptadeca-neuropeptide, HNP) developed from the nerve growth factors from snake venoms predicted their significant interaction with the human TrkA receptor (TrkA). In silico results were validated by an in vitro binding study of the FITC-conjugated custom peptides to rat pheochromocytoma PC-12 cell TrkA receptors. Pre-treatment of PC-12 cells with TNP and HNP induced neuritogenesis and significantly reduced the paraquat (PT)-induced cellular toxicity, the release of lactate dehydrogenase from the cell cytoplasm, production of intracellular ROS, restored the level of antioxidants, prevented alteration of mitochondrial transmembrane potential (ΔΨm) and adenosine triphosphate (ATP) production, and inhibited cellular apoptosis. These peptides lack in vitro cytotoxicity, haemolytic activity, and platelet-modulating properties and do not interfere with the blood coagulation system. Functional proteomic analyses demonstrated the reversal of PT-induced upregulated and downregulated metabolic pathway genes in PC-12 cells that were pre-treated with HNP and revealed the metabolic pathways regulated by HNP to induce neuritogenesis and confer protection against PT-induced neuronal damage in PC-12. The quantitative RT-PCR analysis confirmed that the PT-induced increased and decreased expression of critical pro-apoptotic and anti-apoptotic genes had been restored in the PC-12 cells pre-treated with the custom peptides. A network gene expression profile was proposed to elucidate the molecular interactions among the regulatory proteins for HNP to salvage the PT-induced damage. Taken together, our results show how the peptides can rescue PT-induced oxidative stress, mitochondrial dysfunction, and cellular death and suggest new opportunities for developing neuroprotective drugs.


Subject(s)
Adrenal Gland Neoplasms , Pheochromocytoma , Rats , Humans , Animals , Reactive Oxygen Species/metabolism , Paraquat/pharmacology , Pheochromocytoma/drug therapy , Pheochromocytoma/genetics , Proteomics , Apoptosis , Oxidative Stress , Snake Venoms/metabolism , Snake Venoms/pharmacology
8.
Microbiol Spectr ; : e0348922, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36719230

ABSTRACT

The Actinomycetia isolate PBR11 was isolated from the forest rhizosphere soil of Pobitora Wildlife Sanctuary (PWS), Assam, India. The isolate was identified as Streptomyces sp. with 92.91% sequence similarity to their closest type strain, Streptomyces atrovirens NRRL B-16357 DQ026672. The strain demonstrated significant antimicrobial activity against 19 test pathogens, including multidrug-resistant (MDR) clinical isolates and dermatophytes. Phenol, 2,5-bis(1,1-dimethylethyl), is the major chemical compound detected by gas chromatography-mass spectrometry in the ethyl acetate extract of PBR11 (EtAc-PBR11). The presence of the PKS type II gene (type II polyketide synthases) and chitinase gene suggested that it has been involved in the production of antimicrobial compounds. Metabolic profiling of the EtAc-PBR11 was performed by thin-layer chromatography and flash chromatography resulted in the extraction of two bioactive fractions, namely, PBR11Fr-1 and PBR11Fr-2. Liquid chromatography-tandem mass spectrometry analysis of both the fractions demonstrated the presence of significant antimicrobial compounds, including ethambutol. This is the first report on the detection of antituberculosis drug in the bioactive fractions of Streptomyces sp. PBR11. EtAc-PBR11 and PBR11Fr-1 showed the lowest MIC values (>0.097 and >0.048 µg/mL, respectively) against Candida albicans MTCC 227, whereas they showed the highest MIC values (>0.390 and >0.195 µg/mL, respectively) against Escherichia coli ATCC BAA-2469. The effects of PBR11Fr-1 were investigated on the pathogens by using a scanning electron microscope. The results indicated major morphological alterations in the cytoplasmic membrane. PBR11Fr-1 exhibited low cytotoxicity on normal hepatocyte cell line (CC-1) and the percent cell viability started to decline as the concentration increased from 50 µg/mL (87.07% ± 3.22%) to 100 µg/mL (81.26% ± 2.99%). IMPORTANCE Novel antibiotic breakthroughs are urgently required to combat antimicrobial resistance. Actinomycetia are the principal producers of antibiotics. The present study demonstrated the broad-spectrum antimicrobial potential of an Actinomycetia strain Streptomyces sp. strain PBR11 isolated from the PWS of Assam, India, which represents diverse, poorly screened habitats for novel microorganisms. The strain displayed 92.4% sequence similarity with genes of the closest type strain, indicating that the strain may represent a novel taxon within the phylum Actinomycetota. The metabolomics studies of EtAc-PBR11 revealed structurally diverse antimicrobial agents, including the detection of the antituberculosis drug ethambutol, in the bioactive fraction of Streptomyces sp. PBR11 for the first time. The PBR11 strain also yielded positive results for the antibiotic synthesis gene and the chitinase gene, both of which are responsible for broad-spectrum antimicrobial activity. This suggests that the untouched forest ecosystems have a tremendous potential to harbor potent actinomycetia for future drug discovery.

9.
J Ethnopharmacol ; 303: 115936, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36403743

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Osbeckia nepalensis Hook. f. is an ICMR documented plant well known for its antidiabetic uses among the folk people of Northeast Region of India. In-depth study with scientific substantiation of the plant may uphold the therapeutic potential against the treatment of type 2 diabetes mellitus (T2DM). AIM OF THE STUDY: The present study evaluates the traditionally claimed prophylactic potential of O. nepalensis and its extracts along with the isolated compound taxifolin-3-O-glucoside (TG) against the downregulation of T2DM related hepatic gluconeogenesis through in vitro, in vivo and in silico conditions as a means of ameliorating hyperglycemia. MATERIALS AND METHODS: Antidiabetic potential of O. nepalensis was carried out in both CC1 hepatocytes (in vitro) and STZ-induced diabetic male Wistar rats (in vivo). Enriched bioactive fraction and bioactive molecules were isolated through bioactivity-guided fractionation, yielding two major molecules, taxifolin-3-O-glucoside and quercitin-3-O-rhamnoside. The bioactivity of taxifolin-3-O-glucoside was validated through immunoblotting techniques aided by in silico molecular docking and simulations. RESULTS: Methanolic extract of O. nepalensis and taxifolin-3-O-glucoside (TG) isolated thereof enhanced the uptake of glucose in CC1 hepatocytes and downregulates the gluconeogenic enzymes (G6Pase and PEPCK) and its related transcription factors (FOXO1, HNF4α and PGC1α) through the stimulation of AMPK phosphorylation in in vitro condition. Moreover, in in vivo experiments, the in vitro most active fraction BuSFr1 (consisting of the two active major compounds taxifolin-3-O-glucoside and quercitin-3-O-rhamnoside) exhibited a substantial decrease in elevated blood glucose level and increase the glucose tolerance as well as plasma insulin level. In silico molecular docking and simulations for TG with the protein G6Pase inferred the docking sites and stability and showed taxifolin-3-O-glucoside as more potent and non-toxic as compared to quercitin-3-O-rhamnoside. CONCLUSION: The traditionally claimed antidiabetic effect of O. nepalensis has been proved to be effective in lowering the blood glucose level through in vitro, in vivo and in silico analysis which will pave a way for the development of antidiabetic phytopharmaceutical drugs which can be validated through further clinical studies.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Rats , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Rats, Wistar , Diabetes Mellitus, Type 2/drug therapy , AMP-Activated Protein Kinases/metabolism , Blood Glucose/metabolism , Glucosides/pharmacology , Glucosides/therapeutic use , Glucosides/metabolism , Molecular Docking Simulation , Hepatocytes , Glucose/metabolism , Liver
10.
J Ethnopharmacol ; 301: 115788, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36223844

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Antidesma acidum Retz, a perennial herb is known for its anti-diabetic potential among the traditional health care providers of the tribal communities of Manipur, India. Scientific validation of the ancient knowledge on traditional use of this plant with the help of modern tools and techniques can promote further research and its use in health care. AIM OF THE STUDY: Type 2 Diabetes (T2D) is a complex metabolic disorder and linked with hyperglycemia occurring from insufficiency in insulin secretion, action, or both. The aim of this study was to scientifically validate the traditional myth behind the uses of this plant material against diabetes. More specifically, it was aimed to determine the effect of methanolic extract of A. acidum leaves and/or any of its bioactive phytochemical(s), in enhancing insulin sensitization and subsequently stimulating the insulin signaling cascade of glucose metabolism. MATERIALS AND METHODS: Methanol was used for extraction from the leaf powder of A. acidum followed by bioactivity guided fractionation and isolation of most active component. Biological evaluation was performed to determine the glucose uptake ability against insulin resistance in skeletal muscle (L6) cells. To understand the detailed mechanism of actions of the purified compound, several molecular biology and structural biology experiments such as Western blot, siRNA transfection assay and molecular docking study were performed. RESULTS AND DISCUSSION: Bioactivity guided isolation of pure compound and spectral data analysis led us to identify the active component as Kaempferol 3-O-rutinoside (KOR) for the first time from the leaf of A. acidum. Over expression of NAD-dependent histone deacetylase, Sirtuin 1 (SIRT1) was observed following KOR treatment. SIRT1 plays an important role in the metabolic pathway and over expression of SIRT implies that it involves in insulin signaling directly or indirectly. Molecular docking and simulation study showed the strong involvement between KOR and SIRT1.Treatment with KOR resulted in significant over expression of SIRT1followed by upregulation of insulin-dependent p-IRS, AKT and AMPK signaling molecules, and stimulation of the GLUT4 translocation, which ultimately enhanced the glucose uptake in sodium palmitate-treated insulin resistant L6 myotubes. Further, the effect of KOR on IRS1, AKT and AMPK phosphorylation, GLUT4 translocation, and glucose uptake was attenuated in SIRT1-knockdown myotubes. CONCLUSION: Overall, the results of this study suggest that Kaempferol 3-O-rutinoside is the active component presents in the leaf of A. acidum which increases glucose consumption by inducing SIRT1 activation and consequently improves insulin sensitization. These results may find future applications in drug discovery research against T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Sirtuin 1 , Humans , Sirtuin 1/metabolism , Diabetes Mellitus, Type 2/drug therapy , AMP-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Kaempferols/pharmacology , Kaempferols/therapeutic use , Molecular Docking Simulation , India , Muscle Fibers, Skeletal , Insulin/metabolism , Glucose/metabolism , Muscle, Skeletal , Glucose Transporter Type 4/metabolism
11.
J Biomol Struct Dyn ; 40(24): 13799-13811, 2022.
Article in English | MEDLINE | ID: mdl-34709133

ABSTRACT

Over the years, FK506-binding proteins have been targeted for different pharmaceutical interests. The FK506-binding protein, encoded by the FKBP5 gene, is responsible for stress and metabolic-related disorders, including cancer. In addition, the FKBD-I domain of the protein is a potential target for endocrine-related physiological diseases. In the present study, a set of natural compounds from the ZINC database was screened against FKBP51 protein using in silico strategy, namely pharmacophore modeling, molecular docking, and molecular dynamic simulation. A protein-ligand-based pharmacophore model workflow was employed to identify small molecules. The resultant compounds were then assessed for their toxicity using ADMET prediction. Based on ADMET prediction, 4768 compounds were selected for molecular docking to elucidate their binding mode. Based on the binding energy, 857 compounds were selected, and their Similarity Tanimoto coefficient was calculated, followed by clustering according to Jarvis-Patrick clustering methods (Jarp). The clustered singletons resulted in 14 hit compounds. The top 05 hit compounds and 05 known compounds were then subjected to 100 ns MD simulation to check the stability of complexes. The study revealed that the selected complexes are stable throughout the 100 ns simulation; for FKBD-I (4TW6), crystal structure compared with FKBP-51 (1KT0) crystal structure. Finally, the binding free energies of the hit complexes were calculated using molecular mechanics energies combined with Poisson-Boltzmann. The data reveal that all the complexes show negative BFEs, indicating a good affinity of the hit compounds to the protein. The top five compounds are, therefore, potential inhibitors for FKBP51. Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Dynamics Simulation , Molecular Docking Simulation , Ligands
12.
Phytother Res ; 35(12): 6990-7003, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34734439

ABSTRACT

Metabolic disturbances in different tissue cells and obesity are caused by excessive calorie intake, and medicinal plants are potential sources of phytochemicals for combating these health problems. This study investigated the role of methanolic extract of the folklore medicinal plant Lysimachia candida (LCM) and its phytochemical, astragalin, in managing obesity in vivo and in vitro. Administration of LCM (200 mg/kg/body weight) daily for 140 days significantly decreased both the body weight gain (15.66%) and blood triglyceride and free fatty acid levels in high-fat-diet-fed male Wistar rats but caused no substantial change in leptin and adiponectin levels. The protein expression of adipogenic transcription factors in visceral adipose tissue was significantly reduced. Further, the 3T3-L1 cell-based assay revealed that the butanol fraction of LCM and its isolated compound, astragalin, exhibited antiadipogenic activity through downregulating adipogenic transcription factors and regulatory proteins. Molecular docking studies were performed to depict the possible binding patterns of astragalin to adipogenesis proteins. Overall, we show the potential antiobesity effects of L. candida and its bioactive compound, astragalin, and suggest clinical studies with LCM and astragalin.


Subject(s)
Adipogenesis/drug effects , Anti-Obesity Agents , Kaempferols/pharmacology , Plant Extracts/pharmacology , Primulaceae , Signal Transduction/drug effects , 3T3-L1 Cells , Adipocytes , Animals , Anti-Obesity Agents/pharmacology , Cell Differentiation , Diet, High-Fat , Male , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , PPAR gamma/metabolism , Primulaceae/chemistry , Rats , Rats, Wistar , Tacrolimus Binding Proteins/metabolism
13.
Phytomedicine ; 93: 153761, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34715512

ABSTRACT

BACKGROUND: Premna herbacea Roxb., a perennial herb is well documented for its therapeutic uses among the traditional health care-givers of Assam, India. Scientific validation on the traditional use of the medicinal plant using modern technology may promote further research in health care. PURPOSE: This study evaluates the therapeutic potential of methanolic extract of P. herbacea (MEPH) against type 2 diabetes mellitus (T2DM) and its phytochemical(s) in ameliorating insulin resistance (IR), thereby endorsing the plant bioactives as effective anti-hyperglycemic agents. METHODS: The anti-diabetic potential of the plant extract was explored both in L6 muscle cells and high fructose high fat diet (HF-HFD) fed male Sprague Dawley (SD) rats. Bioactivity guided fractionation and isolation procedure yielded Verbascoside and Isoverbascoside (ISOVER) as bioactive and major phytochemicals in P. herbacea. The bioenergetics profile of bioactive ISOVER and its anti-hyperglycemic potential was validated in vitro by XFe24 analyzer, glucose uptake assay and intracellular ROS generation by flourometer, FACS and confocal microscopy. The potential of ISOVER was also checked by screening various protein markers via immunoblotting. RESULTS: MEPH enhanced glucose uptake in FFA-induced insulin resistant (IR) L6 muscle cells and decreased elevated blood glucose levels in HF-HFD fed rats. Isoverbascoside (ISOVER) was identified as most bioactive phytochemical for the first time from the plant in the Premna genus. ISOVER activated the protein kinase B/AMP-activated protein kinase signaling cascades and enhanced glucose uptake in IR-L6 muscle cells. ISOVER decreased the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK) and increased that of mammalian target of rapamycin (mTOR), thereby attenuating IR. However, molecular docking revealed that ISOVER increases insulin sensitivity by targeting the JNK1 kinase as a competitive inhibitor rather than mTOR. These findings were further supported by the bioenergetics profile of ISOVER. CONCLUSION: This study for the first time depicts the functional properties of ISOVER, derived from Premna herbacea, in ameliorating IR. The phytochemical significantly altered IR with enhanced glucose uptake and inhibition of ROS through JNK-AKT/mTOR signaling which may pave the way for further research in T2DM therapeutics.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Diabetes Mellitus, Type 2/drug therapy , Energy Metabolism , Glucose , Glucosides , Insulin/metabolism , Male , Molecular Docking Simulation , Muscle Cells/metabolism , Phenols , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases/metabolism
14.
J Ethnopharmacol ; 280: 114410, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34273447

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Phyto-preparations and phyto-compounds, by their natural origin, easy availability, cost-effectiveness, and fruitful traditional uses based on accumulated experiences, have been extensively explored to mitigate the global burden of obesity. AIM OF THIS REVIEW: The review aimed to analyse and critically summarize the prospect of future anti-obesity drug leads from the extant array of phytochemicals for mitigation of obesity, using adipose related targets (adipocyte formation, lipid metabolism, and thermogenesis) and non-adipose targets (hepatic lipid metabolism, appetite, satiety, and pancreatic lipase activity). Phytochemicals as inhibitors of adipocyte differentiation, modulators of lipid metabolism, and thermogenic activators of adipocytes are specifically discussed with their non-adipose anti-obesogenic targets. MATERIALS AND METHODS: PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets. The taxonomically accepted name of each plant in this review has been vetted from "The Plant List" (www.theplantlist.org) or MPNS (http://mpns.kew.org). RESULTS: Available knowledge of a large number of phytochemicals, across a range of adipose and non-adipose targets, has been critically analysed and delineated by graphical and tabular depictions, towards mitigation of obesity. Neuro-endocrinal modulation in non-adipose targets brought into sharp dual focus, both non-adipose and adipose targets as the future of anti-obesity research. Numerous phytochemicals (Berberine, Xanthohumol, Ursolic acid, Guggulsterone, Tannic acid, etc.) have been found to be effectively reducing weight through lowered adipocyte formation, increased lipolysis, decreased lipogenesis, and enhanced thermogenesis. They have been affirmed as potential anti-obesity drugs of future because of their effectiveness yet having no threat to adipose or systemic insulin sensitivity. CONCLUSION: Due to high molecular diversity and a greater ratio of benefit to risk, plant derived compounds hold high therapeutic potential to tackle obesity and associated risks. This review has been able to generate fresh perspectives on the anti-diabetic/anti-hyperglycemic/anti-obesity effect of phytochemicals. It has also brought into the focus that many phytochemicals demonstrating in vitro anti-obesogenic effects are yet to undergo in vivo investigation which could lead to potential phyto-molecules for dedicated anti-obesity action.


Subject(s)
Obesity/drug therapy , Plant Preparations/pharmacology , Plants, Medicinal/chemistry , Adipocytes/drug effects , Adipose Tissue/drug effects , Animals , Anti-Obesity Agents/pharmacology , Ethnopharmacology , Humans , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Preparations/chemistry
15.
Arch Biochem Biophys ; 708: 108961, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34118216

ABSTRACT

Oxidative stress resulting from the depletion of glutathione (GSH) level plays a vital role in generating various degenerative diseases, including type 2 diabetes (T2D). We tested the hypothesis that depleted glutathione levels can be enhanced and the impaired glucose metabolism can be prevented by supplementing Allium hookeri, a herb rich in organosulfur compounds, in a High Fat (HF) diet-induced T2D Male Sprague Dawley rat model. The experimental rats were divided into three groups (n = 6), namely normal diet, high-fat diet, and high-fat diet treated with A.hookeri methanolic leaf extract (250 mg/kg). Consumption of HF diet along with the plant extract resulted in significant reduction of the body weight (7.08%-14.89%) and blood glucose level (6.5%-16.4%) from the 13th week onward. There was a significant decrease in reactive oxygen species, oxidized glutathione (GSSG) levels, and an increase in GSH level in skeletal muscle tissues supplemented with the plant extract. The protein expressions of the signaling molecules such as GCLC and GR involved in GSH synthesis and of GLUT4 in glucose transport were also upregulated in the skeletal muscle tissues of the plant extract-treated group. Results of in vitro studies with muscle cell line (L6) further demonstrated the beneficial effect of the plant extract in increasing glucose uptake and maintaining the GSH/GSSH equilibrium via regulation of protein expression of GCLC/GR/GLUT4 signaling molecules in sodium palmitate (0.75 mM) treated cells. Overall this study suggests that dietary supplementation with Allium hookeri, can restore the glutathione level and regulate the blood glucose level in T2D.


Subject(s)
Allium/chemistry , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Glutathione/biosynthesis , Methanol/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Animals , Glutathione/metabolism , Glutathione Disulfide/metabolism , Male , Plant Extracts/isolation & purification , Rats , Rats, Sprague-Dawley
16.
Front Pharmacol ; 12: 653872, 2021.
Article in English | MEDLINE | ID: mdl-33935766

ABSTRACT

Fatty liver is one of the most common metabolic syndrome affecting the global population. Presently, limited treatment modalities with symptomatic approach are available for alleviating fatty liver. Traditional and herbal treatment modalities have shown evidence to improve the disease pathology. In the present research work, evaluation of a selected medicinal plant Lysimachia candida Lindl. was carried out to investigate its beneficial effects on fatty liver disease in rats. Male Sprague Dawley (SD) rats were fed with high-fat high-fructose diet to induce fatty liver phenotypes. After induction for 15 weeks, methanolic extract of Lysimachia candida Lindl. (250 mg/kg b. w. p. o.) was administrated to the rats daily for the next 17 weeks. Blood samples were collected at different time points to analyze fasting blood glucose levels and relevant biochemical parameters important for the assessment of metabolic disease phenotypes. Liquid chromatography-mass spectrometry (LC-MS) based metabolomics was done to study the dynamics of metabolic changes in the serum during disease progression and how the medicinally important plant extract treatment reversed the metabolic diseases. Multivariate data analysis approaches have been employed to understand the metabolome changes and disease pathology. This study has identified the interplay of some metabolic pathways that alter the disease progression and their reversal after administration of the plant extract. Different group of metabolites mainly bile acids, fatty acids, carnitines, and their derivatives were found to be altered in the diseased rats. However, all the metabolites identified between control and disease groups are mainly related to lipid metabolism. The results depict that the treatment with the above-mentioned plant extract improves the regulation of aberrant lipid metabolism, and reverses the metabolic syndrome phenotype. Therefore, the present study reveals the potential mechanism of the herbal extract to prevent metabolic syndrome in rats.

17.
Eur J Pharm Sci ; 162: 105820, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33775827

ABSTRACT

A new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a respiratory infection out broke in December 2019 in Wuhan, Hubei province, China, resulted in pandemic conditions worldwide. COVID-19 spread swiftly around the world over with an alert of an emergency for an adequate drug. Therefore, in this research, we repurposed the FDA-approved medicines to find the prominent drug used to cure the COVID infected patients. We performed homology modeling of the transmembrane serine protease 2 (TMPRSS2), responsible for the viral entry. The prediction of the transmembrane region and the Conserved Domain in TMPRSS2 protein was made for docking. 4182 FDA-approved compounds from the ZINC database were downloaded and used for the calculation of physicochemical properties. Two thousand eight hundred fifteen screened compounds were used for molecular docking against the modelled protein structure. From which top hit compounds based on binding energy were extracted. At 1st site pose, ZINC3830554 showed the highest binding energy -12.91kcal/mol by forming Salt Bridge at LYS143, Hydrogen bond at ALA8, VAL45, HIS47, SER142, ASN277, ASN359, and TRP363. The hydrophobic Interactions at PHE3, LEU4, ALA7, ALA8, ALA139, PRO197, and PHE266. In the 2nd site pose, ZINC203686879 shows the highest binding energy (-12.56 kcal/mol) and forms a hydrophobic interaction with VAL187, VAL189, HIS205, LYS301, GLN347, TRP370 and hydrogen bond was at GLY300, THR302, GLN347, SER350 residues. These hit compounds were subjected to stability checks between the protein-ligand complex through the dynamics simulation (MD), and binding free energy was calculated through the Molecular Mechanics energies combined with Poisson-Boltzmann (MM/PBSA) method. We hope that hit compounds would be an efficient inhibitor that can block the TMPRSS2 activity and resist the entry of the SARS-CoV-2 virus into targeted human cells by reducing the virus's infectivity and transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , China , Humans , Molecular Docking Simulation , Protease Inhibitors , Serine Endopeptidases , Serine Proteases
18.
RSC Adv ; 9(30): 17211-17219, 2019 May 29.
Article in English | MEDLINE | ID: mdl-35519885

ABSTRACT

To reduce the global burden of diabetes in an affordable way great attention has been paid to the search for functional foods and herbal remedies. One of the most popularly used functional foods in the North Eastern region of India is tender shoots of Wendlandia glabrata DC. In the current study identification of active anti-diabetic constituent of the tender shoots of W. glabrata was guided through α-glucosidase inhibition and procyanidin A2 was identified with IC50 0.27 ± 0.01 µg mL-1 making it potential source for postprandial management of DM type 2. The study has also demonstrated procyanidin A2 as a potent anti-diabetic agent that exhibits significant glucose-6-phosphatase inhibitory activities and downregulated mRNA level in diabetic mice as well as increases glucose uptake in hepatocytes and myoblast cells. This study revealed that easily available tender shoots of W. glabrata could be used to make specific dietary recommendations for consumption for affordable management of diabetes.

19.
J Ethnopharmacol ; 191: 21-28, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27282664

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Parkia roxburghii G. Don. is a traditional medicinal plant and its pods are extensively used as food and medicine. It is believed by the traditional healers to have medicinal properties to treat diabetes, hypertension and urinary tract infections (Jamaluddin et al., 1994). MATERIALS AND METHODS: The methanolic extract of pods of P roxburghii and fractions were screened for their α-glucosidase and α-amylase inhibitory activity. Anti-hyperglycemic effects were studied on streptozotocin (45mg/kg b.w.) induced diabetes in albino rats (seven groups, n=7 n=6), using different doses for 14 days. Plasma glucose concentration (HbA1c) was analysed using whole blood, while SGOT, SGPT, TG, TC and uric acid were analysed using serum, employing commercial kits. Quantitative analysis of the major active constituent was carried out by HPLC-PDA. RESULTS: Bioactivity guided chemical investigation of the edible pods of P roxburghii identified sub-fraction EA-Fr 5 which significantly inhibited α-glucosidase (IC50 0.39±0.06 µgmL(-1)), reduced the blood glucose level to normal, and lowered the elevated levels of liver function enzymes SGOT and SGPT in STZ-induced diabetic rats. EA-Fr 5 was found to contain epigallocatechin gallate (1) and hyperin (2) which exhibited significantly higher α-glucosidase inhibitory potency with IC50 0.51±0.09 and 0.71±0.03µM respectively. EA-Fr 5 contained 379.82±2.90mg/g of EGCG, the major active constituent which manifests a broad spectrum of biological activities. CONCLUSION: The present investigation for the first time reports the occurrence of EGCG and hyperin in P roxburghii and substantiates the traditional use of pods of P roxburghii as dietary supplement for management of diabetes with significantly promising α-glucosidase inhibitory potency and anti-hyperglycemic as well as hepatoprotective effects.


Subject(s)
Blood Glucose/drug effects , Chromatography, High Pressure Liquid , Diabetes Mellitus, Experimental/drug therapy , Fabaceae/chemistry , Fruit/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Liver/drug effects , Plant Extracts/pharmacology , Animals , Biomarkers/blood , Blood Glucose/metabolism , Catechin/analogs & derivatives , Catechin/isolation & purification , Catechin/pharmacology , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/enzymology , Glycated Hemoglobin/metabolism , Glycoside Hydrolase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/toxicity , Liver/enzymology , Phytotherapy , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Plants, Medicinal , Rats, Wistar , Streptozocin , Time Factors , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism
20.
Life Sci ; 143: 105-13, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26541229

ABSTRACT

AIMS: Scutellaria discolor Colebr. has been extensively used in traditional medicine against several diseases. The purpose of this study was to investigate the anticancer potential of S. discolor and to isolate the bioactive principle responsible for the anticancer activity. METHODS: Cytotoxicity experiments were performed on cancer and normal cells using MTT assay. The mechanism of cell death was evaluated using real time PCR array, fluorescence microscopy, flow cytometry and Western blotting. MTT assay guided isolation (partition and column chromatography) was performed to identify the antiproliferative principle. Quantification of the active principle was done using HPLC. KEY FINDINGS: Acetone extract of S. discolor (SDE) inhibited the growth and survival of cancer cells to varying degree, but the inhibition was found to be maximum in cervical cancer cell lines. There was no significant toxicity induced to normal cells. The cell death was mediated through apoptosis. There was increased mitochondrial membrane depolarization, expression of Bax, caspase-9, caspase-3 and cleaved-PARP indicating that SDE-induced caspase dependent apoptosis in HeLa cells. Moreover, SDE caused cell cycle arrest in G2 phase in HeLa cells. Cytotoxicity guided fractionation of SDE led to the isolation of chrysin as the active principle responsible for the antiproliferative activity for cervical cancer cells. Interestingly, chrysin was the major phytochemical constituent present in S. discolor. SIGNIFICANCE: S. discolor is an important anticancer plant and a new source of chrysin.


Subject(s)
Apoptosis/drug effects , Caspases/metabolism , Cell Cycle Checkpoints/drug effects , Flavonoids/therapeutic use , Scutellaria , Uterine Cervical Neoplasms/enzymology , Apoptosis/physiology , Cell Cycle Checkpoints/physiology , Cell Death/drug effects , Cell Death/physiology , Dose-Response Relationship, Drug , Female , Flavonoids/isolation & purification , Flavonoids/pharmacology , HeLa Cells , Hep G2 Cells , Humans , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Uterine Cervical Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...