Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Invest Surg ; 34(12): 1339-1347, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32781870

ABSTRACT

INTRODUCTION: The aim of this study was to investigate the effect of perineural dexamethasone against intraneural bupivacaine. MATERIAL AND METHODS: Rats were divided into 9 groups with 6 animals in each group; Group 1 (Intraneural saline 600 µL-2ndday), Group 2 (Intraneural saline 600 µL-7th day), Group 3 (Intraneural saline 600 µL + perineural dexamethasone 0.5 mg/kg-2nd day), Group 4 (Intraneural saline 600 µL + perineural dexamethasone 0.5 mg/kg-7th day), Group 5 (Intraneural bupivacaine 10 mg/kg-2nd day), Group 6 (Intranueral bupivacaine 10 mg/kg-7th day), Group 7 (Intraneural bupivacaine 10 mg/kg + perineurald exam ethasone 0.5 mg/kg-2nd day), Group 8 (Intraneural bupivacaine 10 mg/kg + perineural dexamethasone 0.5 mg/kg-7th day), Group 9 (Control group). At the end of the application period, histopathological and immunohistochemical examinations were analyzed. RESULTS AND CONCLUSION: It was observed that caspase 3 levels significantly increased in the 5th and 6th groups compared to the 1st and 2nd groups (p < 0.01). However, in the 7th and 8th groups, these levels were similar with 1st and 2nd groups. While a significant decrease in S 100 levels was detected in group 6 (p < 0.05), a significant increase occurred in Group 8 and reached the same levels as Group 2. According to histopathological evaluation, edema, vacuolization and myelin degeneration were significantly increased in groups 5 and 6 (p < 0.05). However, in the 8th group, the mentioned data showed a significant decrease and reached the same levels as group 2. As a result, perineural dexamethasone was found to have protective effects against intraneural bupivacaine induced sciatic nerve damage.


Subject(s)
Anesthetics, Local , Bupivacaine , Dexamethasone/therapeutic use , Injections/adverse effects , Sciatic Nerve/injuries , Anesthetics, Local/adverse effects , Animals , Bupivacaine/adverse effects , Rats
2.
Naunyn Schmiedebergs Arch Pharmacol ; 393(9): 1691-1699, 2020 09.
Article in English | MEDLINE | ID: mdl-32383030

ABSTRACT

The antioxidant and cardioprotective effects of oleuropein have been reported in several studies; however, its effect on ketamine cardiotoxicity has not been known yet. The aim of this study was to investigate the effects of oleuropein in ketamine-induced cardiotoxicity model in rats. A total of 28 male Wistar Albino rats were included in the study and they were randomly divided into four groups, each having seven rats. Group 1 (control): rats were given 1 mL of DMSO by oral gavage method for 7 days. Group 2 (ketamine): on the seventh day of the study, 60 mg/kg ketamine was administered intraperitoneally. Then, 60 mg/kg ketamine was administered intraperitoneally every 10 min for 3 h. Group 3 (oleuropein): rats were given 200 mg/kg/day oleuropein by oral gavage method for 7 days. Group 4 (oleuropein + ketamine): rats were given 1 × 200 mg/kg oleuropein by oral gavage method for 7 days. Furthermore, 60 mg/kg ketamine was administered intraperitoneally on the seventh day of the experiment. Then, 60 mg/kg ketamine was administered intraperitoneally every 10 min for 3 h. Serum cardiac marker (TnI, CK-MB and CK) levels were measured. Histopathological analysis was performed on a portion of the cardiac tissue. Cardiac tissue oxidative stress and antioxidant markers (MDA, GSH, GSH.Px and CAT), TNF-α, IL-6, NF-κB, COX-2 and Nrf-2 gene expressions, and protein conversion levels of related genes were determined. Data obtained showed that ketamine administration increased MDA (p < 0.001), TNF-α (p < 0.01), IL-6 (p < 0.01), COX-2 (p < 0.001) and NF-κB (p < 0.001) levels, as well as serum TnI (p < 0.001), CK-MB (p < 0.001) and CK (p < 0.01) levels whereas decreased GSH (p < 0.05) and Nrf-2 (p < 0.05) levels, as well as GSH-Px (p < 0.001) and CAT (p < 0.05) enzyme activities. Oleuropein administration was observed to decrease MDA, TNF-α, IL-6, COX-2, NF-κB, TnI, CK-MB and CK levels close to the control group and to increase GSH levels and GSH-Px and CAT enzyme activities close to the control group. This study showed that oleuropein administration reversed the increased oxidative stress and inflammation as a result of the use of ketamine and had protective effects on the heart.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Heart Diseases/prevention & control , Inflammation Mediators/metabolism , Iridoid Glucosides/pharmacology , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Animals , Cardiotoxicity , Disease Models, Animal , Heart Diseases/chemically induced , Heart Diseases/metabolism , Heart Diseases/pathology , Ketamine , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats, Wistar , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...