Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters










Publication year range
1.
Eur J Pharm Sci ; 195: 106721, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38331005

ABSTRACT

Hydrogen sulfide (H2S), a gasotransmitter, plays a crucial role in vasorelaxation, anti-inflammatory processes and mitigating myocardial ischemia/reperfusion-induced injury by regulating various signaling processes. We designed a water soluble H2S-releasing ascorbic acid derivative, BM-164, to combine the beneficial cardiovascular and anti-inflammatory effects of H2S with the excellent water solubility and antioxidant properties of ascorbic acid. DPPH antioxidant assay revealed that the antioxidant activity of BM-164 in the presence of a myocardial tissue homogenate (extract) increased continuously over the 120 min test interval due to the continuous release of H2S from BM-164. The cytotoxicity of BM-164 was tested by MTT assay on H9c2 cells, which resulted in no cytotoxic effect at concentrations of 10 to 30 µM. The possible beneficial effects of BM-164 (30 µM) was examined in isolated 'Langendorff' rat hearts. The incidence of ventricular fibrillation (VF) was significantly reduced from its control value of 79 % to 31 % in the BM-164 treated group, and the infarct size was also diminished from the control value of 28 % to 14 % in the BM-164 treated group. However, coronary flow (CF) and heart rate (HR) values in the BM-164 treated group did not show significantly different levels in comparison with the drug-free control, although a non-significant recovery in both CF and HR was observed at each time point. We attempted to reveal the mechanism of action of BM-164, focusing on the processes of autophagy and apoptosis. The expression of key autophagic and apoptotic markers in isolated rat hearts were detected by Western blot analysis. All the examined autophagy-related proteins showed increased expression levels in the BM-164 treated group in comparison to the drug-free control and/or ascorbic acid treated groups, while the changes in the expression of apoptotic markers were not obvious. In conclusion, the designed water soluble H2S releasing ascorbic acid derivative, BM-164, showed better cardiac protection against ischemia/reperfusion-induced injury compared to the untreated and ascorbic acid treated hearts, respectively.


Subject(s)
Hydrogen Sulfide , Myocardial Reperfusion Injury , Rats , Animals , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Antioxidants/pharmacology , Rats, Wistar , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Ischemia , Anti-Inflammatory Agents/therapeutic use , Water , Reperfusion , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/therapeutic use
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339036

ABSTRACT

Human Galectin-3 (hGal-3) is a protein that selectively binds to ß-galactosides and holds diverse roles in both normal and pathological circumstances. Therefore, targeting hGal-3 has become a vibrant area of research in the pharmaceutical chemistry. As a step towards the development of novel hGal-3 inhibitors, we synthesized and investigated derivatives of thiodigalactoside (TDG) modified with different aromatic substituents. Specifically, we describe a high-yielding synthetic route of thiodigalactoside (TDG); an optimized procedure for the synthesis of the novel 3,3'-di-O-(quinoline-2-yl)methyl)-TDG and three other known, symmetric 3,3'-di-O-TDG derivatives ((naphthalene-2yl)methyl, benzyl, (7-methoxy-2H-1-benzopyran-2-on-4-yl)methyl). In the present study, using competition Saturation Transfer Difference (STD) NMR spectroscopy, we determined the dissociation constant (Kd) of the former three TDG derivatives produced to characterize the strength of the interaction with the target protein (hGal-3). Based on the Kd values determined, the (naphthalen-2-yl)methyl, the (quinolin-2-yl)methyl and the benzyl derivatives bind to hGal-3 94, 30 and 24 times more strongly than TDG. Then, we studied the binding modes of the derivatives in silico by molecular docking calculations. Docking poses similar to the canonical binding modes of well-known hGal-3 inhibitors have been found. However, additional binding forces, cation-π interactions between the arginine residues in the binding pocket of the protein and the aromatic groups of the ligands, have been established as significant features. Our results offer a molecular-level understanding of the varying affinities observed among the synthesized thiodigalactoside derivatives, which can be a key aspect in the future development of more effective ligands of hGal-3.


Subject(s)
Galectin 3 , Thiogalactosides , Humans , Galectin 3/antagonists & inhibitors , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Docking Simulation , Protein Binding , Thiogalactosides/chemistry , Thiogalactosides/pharmacology
3.
Pharmaceutics ; 16(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38399271

ABSTRACT

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented an enormous challenge to health care systems and medicine. As a result of global research efforts aimed at preventing and effectively treating SARS-CoV-2 infection, vaccines with fundamentally new mechanisms of action and some small-molecule antiviral drugs targeting key proteins in the viral cycle have been developed. The most effective small-molecule drug approved to date for the treatment of COVID-19 is PaxlovidTM, which is a combination of two protease inhibitors, nirmatrelvir and ritonavir. Nirmatrelvir is a reversible covalent peptidomimetic inhibitor of the main protease (Mpro) of SARS-CoV-2, which enzyme plays a crucial role in viral reproduction. In this combination, ritonavir serves as a pharmacokinetic enhancer, it irreversibly inhibits the cytochrome CYP3A4 enzyme responsible for the rapid metabolism of nirmatrelvir, thereby increasing the half-life and bioavailability of nirmatrelvir. In this tutorial review, we summarize the development and pharmaceutical chemistry aspects of Paxlovid, covering the evolution of protease inhibitors, the warhead design, synthesis and the mechanism of action of nirmatrelvir, as well as the synthesis of ritonavir and its CYP3A4 inhibition mechanism. The efficacy of Paxlovid to novel virus mutants is also overviewed.

4.
Int J Mol Sci ; 25(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38203849

ABSTRACT

Highly sulfated malto-oligomers, similar to heparin and heparan-sulfate, have good antiviral, antimetastatic, anti-inflammatory and cell growth inhibitory effects. Due to their broad biological activities and simple structure, sulfated malto-oligomer derivatives have a great therapeutic potential, therefore, the development of efficient synthesis methods for their production is of utmost importance. In this work, preparation of α-(1→4)-linked oligoglucosides containing a sulfonatomethyl moiety at position C-6 of each glucose unit was studied by different approaches. Malto-oligomeric sulfonic acid derivatives up to dodecasaccharides were prepared by polymerization using different protecting groups, and the composition of the product mixtures was analyzed by MALDI-MS methods and size-exclusion chromatography. Synthesis of lower oligomers was also accomplished by stepwise and block synthetic methods, and then the oligosaccharide products were persulfated. The antiviral, anti-inflammatory and cell growth inhibitory activity of the fully sulfated malto-oligosaccharide sulfonic acids were determined by in vitro tests. Four tested di- and trisaccharide sulfonic acids effectively inhibited the activation of the TNF-α-mediated inflammatory pathway without showing cytotoxicity.


Subject(s)
Oligosaccharides , Sulfates , Polymerization , Oligosaccharides/pharmacology , Sulfonic Acids , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology
5.
Int J Mol Sci ; 24(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139095

ABSTRACT

In the shadow of SARS-CoV-2, influenza seems to be an innocent virus, although new zoonotic influenza viruses evolved by mutations may lead to severe pandemics. According to WHO, there is an urgent need for better antiviral drugs. Blocking viral hemagglutinin with multivalent N-acetylneuraminic acid derivatives is a promising approach to prevent influenza infection. Moreover, dual inhibition of both hemagglutinin and neuraminidase may result in a more powerful effect. Since both viral glycoproteins can bind to neuraminic acid, we have prepared three series of amphiphilic self-assembling 2-thio-neuraminic acid derivatives constituting aggregates in aqueous medium to take advantage of their multivalent effect. One of the series was prepared by the azide-alkyne click reaction, and the other two by the thio-click reaction to yield neuraminic acid derivatives containing lipophilic tails of different sizes and an enzymatically stable thioglycosidic bond. Two of the three bis-octyl derivatives produced proved to be active against influenza viruses, while all three octyl derivatives bound to hemagglutinin and neuraminidase from H1N1 and H3N2 influenza types.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Influenza, Human/drug therapy , N-Acetylneuraminic Acid/pharmacology , N-Acetylneuraminic Acid/metabolism , Hemagglutinins/pharmacology , Neuraminidase/metabolism , Influenza A Virus, H3N2 Subtype , Neuraminic Acids , Hemagglutinin Glycoproteins, Influenza Virus/metabolism
6.
Sci Rep ; 13(1): 19618, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37949940

ABSTRACT

(-)-Cannabidiol (CBD) and (-)-cannabigerol (CBG) are two major non-psychotropic phytocannabinoids that have many beneficial biological properties. However, due to their low water solubility and prominent first-pass metabolism, their oral bioavailability is moderate, which is unfavorable for medicinal use. Therefore, there is a great need for appropriate chemical modifications to improve their physicochemical and biological properties. In this study, Mannich-type reaction was used for the synthetic modification of CBD and CBG for the first time, and thus fifteen new cannabinoid derivatives containing one or two tertiary amino groups were prepared. Thereafter the antiviral, antiproliferative and antibacterial properties of the derivatives and their effects on certain skin cells were investigated. Some modified CBD derivatives showed remarkable antiviral activity against SARS-CoV-2 without cytotoxic effect, while synthetic modifications on CBG resulted in a significant increase in antiproliferative activity in some cases compared to the parent compound.


Subject(s)
Cannabidiol , Cannabinoids , Cannabidiol/pharmacology , Cannabinoids/pharmacology , Biological Availability , Antiviral Agents/pharmacology
7.
Antioxidants (Basel) ; 12(9)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37760017

ABSTRACT

Cannabidiol (CBD) is a nonpsychoactive phytocannabinoid that can be found in Cannabis sativa and possesses numerous pharmacological effects. Due to these promising effects, CBD can be used in a wide variety of diseases, for instance cardiovascular diseases. However, CBD, like tetrahydrocannabinol (THC), has low bioavailability, poor water solubility, and a variable pharmacokinetic profile, which hinders its therapeutic use. Chemical derivatization of CBD offers us potential ways to overcome these issues. We prepared three new CBD derivatives substituted on the aromatic ring by Mannich-type reactions, which have not been described so far for the modification of cannabinoids, and studied the protective effect they have on cardiomyocytes exposed to oxidative stress and hypoxia/reoxygenation (H/R) compared to the parent compound. An MTT assay was performed to determine the viability of rat cardiomyocytes treated with test compounds. Trypan blue exclusion and lactate dehydrogenase (LDH) release assays were carried out to study the effect of the new compounds in cells exposed to H2O2 or hypoxia/reoxygenation (H/R). Direct antioxidant activity was evaluated by a total antioxidant capacity (TAC) assay. To study antioxidant protein levels, HO-1, SOD, catalase, and Western blot analysis were carried out. pIC50 (the negative log of the IC50) values were as follows: CBD1: 4.113, CBD2: 3.995, CBD3: 4.190, and CBD: 4.671. The newly synthesized CBD derivatives prevented cell death induced by H/R, especially CBD2. CBD has the largest direct antioxidant activity. The levels of antioxidant proteins were increased differently after pretreatment with synthetic CBD derivatives and CBD. Taken together, our newly synthesized CBD derivatives are able to decrease cytotoxicity during oxidative stress and H/R. The compounds have similar or better effects than CBD on H9c2 cells.

8.
Sci Rep ; 13(1): 12228, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37507429

ABSTRACT

Drug-resistant Plasmodium falciparum (Pf) infections are a major burden on the population and the healthcare system. The establishment of Pf resistance to most existing antimalarial therapies has complicated the problem, and the emergence of resistance to artemisinin derivatives is even more concerning. It is increasingly difficult to cure malaria patients due to the limited availability of effective antimalarial drugs, resulting in an urgent need for more efficacious and affordable treatments to eradicate this disease. Herein, new nucleoside analogues including morpholino-nucleoside hybrids and thio-substituted nucleoside derivatives were prepared and evaluated for in vitro and in vivo antiparasitic activity that led a few hits especially nucleoside-thiopyranoside conjugates, which are highly effective against Pf3D7 and PfRKL-9 strains in submicromolar concentration. One adenosine derivative and four pyrimidine nucleoside analogues significantly reduced the parasite burden in mouse models infected with Plasmodium berghei ANKA. Importantly, no significant hemolysis and cytotoxicity towards human cell line (RAW) was observed for the hits, suggesting their safety profile. Preliminary research suggested that these thiosugar-nucleoside conjugates could be used to accelerate the antimalarial drug development pipeline and thus deserve further investigation.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Animals , Mice , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Nucleosides/pharmacology , Nucleosides/therapeutic use , Sugars/pharmacology , Plasmodium falciparum , Malaria/drug therapy , Malaria/parasitology , Malaria, Falciparum/drug therapy , Plasmodium berghei
9.
Nucleic Acids Res ; 51(10): 5255-5270, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37115000

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). The NSP15 endoribonuclease enzyme, known as NendoU, is highly conserved and plays a critical role in the ability of the virus to evade the immune system. NendoU is a promising target for the development of new antiviral drugs. However, the complexity of the enzyme's structure and kinetics, along with the broad range of recognition sequences and lack of structural complexes, hampers the development of inhibitors. Here, we performed enzymatic characterization of NendoU in its monomeric and hexameric form, showing that hexamers are allosteric enzymes with a positive cooperative index, and with no influence of manganese on enzymatic activity. Through combining cryo-electron microscopy at different pHs, X-ray crystallography and biochemical and structural analysis, we showed that NendoU can shift between open and closed forms, which probably correspond to active and inactive states, respectively. We also explored the possibility of NendoU assembling into larger supramolecular structures and proposed a mechanism for allosteric regulation. In addition, we conducted a large fragment screening campaign against NendoU and identified several new allosteric sites that could be targeted for the development of new inhibitors. Overall, our findings provide insights into the complex structure and function of NendoU and offer new opportunities for the development of inhibitors.


Subject(s)
SARS-CoV-2 , Humans , Allosteric Regulation , Amino Acid Sequence , COVID-19 , Cryoelectron Microscopy , Endoribonucleases/metabolism , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/chemistry
10.
Eur J Pharm Sci ; 185: 106449, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37076051

ABSTRACT

Hydrogen sulfide (H2S) plays an important role in cardiac protection by regulating various redox signalings associated with myocardial ischemia/reperfusion (I/R) induced injury. The goal of the present investigations is the synthesis of a newly designed H2S-releasing ibuprofen derivative, BM-88, and its pharmacological characterization regarding the cardioprotective effects in isolated rat hearts. Cytotoxicity of BM-88 was also estimated in H9c2 cells. H2S-release was measured by an H2S sensor from the coronary perfusate. Increasing concentrations of BM-88 (1.0 to 20.0 µM) were tested in vitro studies. Preadministration of 10 µM BM-88 significantly reduced the incidence of reperfusion-induced ventricular fibrillation (VF) from its drug-free control value of 92% to 12%. However, no clear dose dependent reduction in the incidence of reperfusion-induced VF was observed while different concentrations of BM-88 were used. It was also found that 10 µM BM-88 provided a substantial protection and significantly reduced the infarct size in the ischemic/reperfused myocardium. However, this cardiac protection was not reflected in any significant changes in coronary flow and heart rates. The results support the fact that H2S release plays an important role mitigating reperfusion-induced cardiac damage.


Subject(s)
Hydrogen Sulfide , Reperfusion Injury , Rats , Animals , Hydrogen Sulfide/pharmacology , Ibuprofen/pharmacology , Ibuprofen/therapeutic use , Heart , Reperfusion
11.
Int J Mol Sci ; 24(6)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36982924

ABSTRACT

A new flexible germacranolide (1, lobatolide H) was isolated from the aerial parts of Neurolaena lobata. The structure elucidation was performed by classical NMR experiments and DFT NMR calculations. Altogether, 80 theoretical level combinations with existing 13C NMR scaling factors were tested, and the best performing ones were applied on 1. 1H and 13C NMR scaling factors were also developed for two combinations utilizing known exomethylene containing derivatives, and the results were complemented by homonuclear coupling constant (JHH) and TDDFT-ECD calculations to elucidate the stereochemistry of 1. Lobatolide H possessed remarkable antiproliferative activity against human cervical tumor cell lines with different HPV status (SiHa and C33A), induced cell cycle disturbance and exhibited a substantial antimigratory effect in SiHa cells.


Subject(s)
Asteraceae , Sesquiterpenes , Humans , Molecular Structure , Asteraceae/chemistry , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging , Sesquiterpenes/pharmacology
12.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36834964

ABSTRACT

The emergence of drug-resistant bacteria and fungi represents a serious health problem worldwide. It has long been known that cationic compounds can inhibit the growth of bacteria and fungi by disrupting the cell membrane. The advantage of using such cationic compounds is that the microorganisms would not become resistant to cationic agents, since this type of adaptation would mean significantly altering the structure of their cell walls. We designed novel, DBU (1,8-diazabicyclo[5.4.0]undec-7-ene)-derived amidinium salts of carbohydrates, which may be suitable for disturbing the cell walls of bacteria and fungi due to their quaternary ammonium moiety. A series of saccharide-DBU conjugates were prepared from 6-iodo derivatives of d-glucose, d-mannose, d-altrose and d-allose by nucleophilic substitution reactions. We optimized the synthesis of a d-glucose derivative, and studied the protecting group free synthesis of the glucose-DBU conjugates. The effect of the obtained quaternary amidinium salts against Escherichia coli and Staphylococcus aureus bacterial strains and Candida albicans yeast was investigated, and the impact of the used protecting groups and the sugar configuration on the antimicrobial activity was analyzed. Some of the novel sugar quaternary ammonium compounds with lipophilic aromatic groups (benzyl and 2-napthylmethyl) showed particularly good antifungal and antibacterial activity.


Subject(s)
Antifungal Agents , Salts , Antifungal Agents/pharmacology , Salts/pharmacology , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Fungi , Bacteria , Quaternary Ammonium Compounds/chemistry , Carbohydrates/pharmacology , Glucose/pharmacology , Sugars/pharmacology , Microbial Sensitivity Tests
13.
Org Biomol Chem ; 21(10): 2213-2219, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36804654

ABSTRACT

Herein, we report a stereoselective synthesis of a novel type of conformationally constrained nucleoside analogue in which the sugar part is replaced by a new symmetrical tricycle consisting of a morpholine ring condensed with two imidazolidines. 1,5-Dialdehydes obtained from trityl- and dimethoxytrityl-protected uridine, ribothymidine, inosine, cytidine, adenosine and guanosine by metaperiodate oxidation were reacted with N1,N3-dibenzyl-1,2,3-triaminopropane; the latter reactant was produced using a new method that avoids explosive intermediates. Reactions of dialdehydes with propane-triamine via cascade tricyclization resulted in the corresponding triaza-tricyclic derivatives bearing three new stereogenic centers in high yields. Out of the eight possible diastereoisomers, one stereoisomer was formed in each case due to the chiral control of the starting nucleoside-dialdehydes and the steric constraint of the condensed ring system. The absolute configuration of the new stereotriad was determined by X-ray diffraction and NMR experiments. A mechanistic study performed under reductive conditions to trap the presumed bicyclic intermediate showed that the triamine reactant first attacks the 2'-aldehyde group, followed by a rapid bicyclization to form the imidazolidino-morpholine unit.

14.
Chemistry ; 29(11): e202203248, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36437234

ABSTRACT

The first concise and efficient synthesis of some fluorine-containing morpholino nucleosides has been developed. One synthetic strategy was based on the oxidative ring cleavage of the vicinal diol unit of uridine, cytidine adenosine and guanosine derivatives, followed by cyclisation of the dialdehyde intermediates by double reductive amination with fluorinated primary amines to obtain various N-fluoroalkylated morpholinos. Another approach involved cyclisation of the diformyl intermediates with ammonia source, followed by dithiocarbamate formation and desulfurization-fluorination with diethylaminosulfur trifluoride yielding the corresponding morpholine-based nucleoside analogues with a N-CF3 element in their structure.

15.
Sci Rep ; 12(1): 20921, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463278

ABSTRACT

Gram-negative bacteria possess intrinsic resistance to glycopeptide antibiotics so these important antibacterial medications are only suitable for the treatment of Gram-positive bacterial infections. At the same time, polymyxins are peptide antibiotics, structurally related to glycopeptides, with remarkable activity against Gram-negative bacteria. With the aim of breaking the intrinsic resistance of Gram-negative bacteria against glycopeptides, a polycationic vancomycin aglycone derivative carrying an n-decanoyl side chain and five aminoethyl groups, which resembles the structure of polymyxins, was prepared. Although the compound by itself was not active against the Gram-negative bacteria tested, it synergized with teicoplanin against Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii, and it was able to potentiate vancomycin against these Gram-negative strains. Moreover, it proved to be active against vancomycin- and teicoplanin-resistant Gram-positive bacteria.


Subject(s)
Drug Resistance, Bacterial , Polymyxins , Teicoplanin , Anti-Bacterial Agents/pharmacology , Escherichia coli , Glycopeptides/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Polymyxins/pharmacology , Teicoplanin/pharmacology , Vancomycin/pharmacology
16.
Int J Mol Sci ; 23(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36555839

ABSTRACT

The Gram-negative bacterium Pseudomonas aeruginosa is an important opportunistic human pathogen associated with cystic fibrosis. P. aeruginosa produces two soluble lectins, the d-galactose-specific lectin PA-IL (LecA) and the l-fucose-specific lectin PA-IIL (LecB), among other virulence factors. These lectins play an important role in the adhesion to host cells and biofilm formation. Moreover, PA-IL is cytotoxic to respiratory cells in the primary culture. Therefore, these lectins are promising therapeutic targets. Specifically, carbohydrate-based compounds could inhibit their activity. In the present work, a 3-O-fucosyl lactose-containing tetravalent glycocluster was synthesized and utilized as a mutual ligand of galactophilic and fucophilic lectins. Pentaerythritol equipped with azido ethylene glycol-linkers was chosen as a multivalent scaffold and the glycocluster was constructed by coupling the scaffold with propargyl 3-O-fucosyl lactoside using an azide-alkyne 1,3-dipolar cycloaddition reaction. The interactions between the glycocluster and PA-IL or PA-IIL were investigated by isothermal titration microcalorimetry and saturation transfer difference NMR spectroscopy. These results may assist in the development of efficient anti-adhesion therapy for the treatment of a P. aeruginosa infection.


Subject(s)
Lactose , Pseudomonas aeruginosa , Adhesins, Bacterial , Lactose/pharmacology , Lectins/chemistry , Ligands
17.
J Org Chem ; 87(23): 15830-15836, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36411253

ABSTRACT

l-Iduronic acid is a key constituent of heparin and heparan sulfate polysaccharides due to its unique conformational plasticity, which facilitates the binding of polysaccharides to proteins. At the same time, this is the synthetically most challenging unit of heparinoid oligosaccharides; therefore, there is a high demand for its replacement with a more easily accessible sugar unit. In the case of idraparinux, an excellent anticoagulant heparinoid pentasaccharide, we demonstrated that l-iduronic acid can be replaced by an easier-to-produce l-sugar while maintaining its essential biological activity. From the inexpensive d-mannose, through a highly functionalized phenylthio mannoside, the l-gulose donor was prepared by C-5 epimerization in 10 steps with excellent yield. This unit was incorporated into the pentasaccharide by α-selective glycosylation and oxidized to l-guluronic acid. The complete synthesis required only 36 steps, with 21 steps for the longest linear route. The guluronate containing pentasaccharide inhibited coagulation factor Xa by 50% relative to the parent compound, representing an excellent anticoagulant activity. To the best of our knowledge, this is the first biologically active heparinoid anticoagulant which contains a different sugar unit instead of l-iduronic acid.


Subject(s)
Heparinoids , Iduronic Acid , Oligosaccharides/pharmacology , Anticoagulants/pharmacology , Mannose
18.
Int J Mol Sci ; 23(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36293420

ABSTRACT

d-Arabinofuranosyl-pyrimidine and -purine nucleoside analogues containing alkylthio-, acetylthio- or 1-thiosugar substituents at the C2' position were prepared from the corresponding 3',5'-O-silylene acetal-protected nucleoside 2'-exomethylenes by photoinitiated, radical-mediated hydrothiolation reactions. Although the stereochemical outcome of the hydrothiolation depended on the structure of both the thiol and the furanoside aglycone, in general, high d-arabino selectivity was obtained. The cytotoxic effect of the arabinonucleosides was studied on tumorous SCC (mouse squamous cell) and immortalized control HaCaT (human keratinocyte) cell lines by MTT assay. Three pyrimidine nucleosides containing C2'-butylsulfanylmethyl or -acetylthiomethyl groups showed promising cytotoxicity at low micromolar concentrations with good selectivity towards tumor cells. SAR analysis using a methyl ß-d-arabinofuranoside reference compound showed that the silyl-protecting group, the nucleobase and the corresponding C2' substituent are crucial for the cell growth inhibitory activity. The effects of the three most active nucleoside analogues on parameters indicative of cytotoxicity, such as cell size, division time and cell generation time, were investigated by near-infrared live cell imaging, which showed that the 2'-acetylthiomethyluridine derivative induced the most significant functional and morphological changes. Some nucleoside analogues also exerted anti-SARS-CoV-2 and/or anti-HCoV-229E activity with low micromolar EC50 values; however, the antiviral activity was always accompanied by significant cytotoxicity.


Subject(s)
COVID-19 , Pyrimidine Nucleosides , Thiosugars , Humans , Mice , Animals , Arabinonucleosides/chemistry , Arabinonucleosides/pharmacology , Nucleosides/pharmacology , Nucleosides/chemistry , Antiviral Agents/pharmacology , Acetals , Sulfhydryl Compounds/chemistry , Purines , Structure-Activity Relationship
19.
Sci Rep ; 12(1): 16001, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163239

ABSTRACT

Patients infected with SARS-CoV-2 risk co-infection with Gram-positive bacteria, which severely affects their prognosis. Antimicrobial drugs with dual antiviral and antibacterial activity would be very useful in this setting. Although glycopeptide antibiotics are well-known as strong antibacterial drugs, some of them are also active against RNA viruses like SARS-CoV-2. It has been shown that the antiviral and antibacterial efficacy can be enhanced by synthetic modifications. We here report the synthesis and biological evaluation of seven derivatives of teicoplanin bearing hydrophobic or superbasic side chain. All but one teicoplanin derivatives were effective in inhibiting SARS-CoV-2 replication in VeroE6 cells. One lipophilic and three perfluoroalkyl conjugates showed activity against SARS-CoV-2 in human Calu-3 cells and against HCoV-229E, an endemic human coronavirus, in HEL cells. Pseudovirus entry and enzyme inhibition assays established that the teicoplanin derivatives efficiently prevent the cathepsin-mediated endosomal entry of SARS-CoV-2, with some compounds inhibiting also the TMPRSS2-mediated surface entry route. The teicoplanin derivatives showed good to excellent activity against Gram-positive bacteria resistant to all approved glycopeptide antibiotics, due to their ability to dually bind to the bacterial membrane and cell-wall. To conclude, we identified three perfluoralkyl and one monoguanidine analog of teicoplanin as dual inhibitors of Gram-positive bacteria and SARS-CoV-2.


Subject(s)
COVID-19 , Fluorocarbons , Anti-Bacterial Agents/chemistry , Antiviral Agents/chemistry , Cathepsins/pharmacology , Fluorocarbons/pharmacology , Glycopeptides/chemistry , Gram-Positive Bacteria , Humans , SARS-CoV-2 , Teicoplanin/pharmacology
20.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35893733

ABSTRACT

Nucleic acids play a central role in human biology, making them suitable and attractive tools for therapeutic applications. While conventional drugs generally target proteins and induce transient therapeutic effects, nucleic acid medicines can achieve long-lasting or curative effects by targeting the genetic bases of diseases. However, native oligonucleotides are characterized by low in vivo stability due to nuclease sensitivity and unfavourable physicochemical properties due to their polyanionic nature, which are obstacles to their therapeutic use. A myriad of synthetic oligonucleotides have been prepared in the last few decades and it has been shown that proper chemical modifications to either the nucleobase, the ribofuranose unit or the phosphate backbone can protect the nucleic acids from degradation, enable efficient cellular uptake and target localization ensuring the efficiency of the oligonucleotide-based therapy. In this review, we present a summary of structure and properties of artificial nucleic acids containing nucleobase, sugar or backbone modifications, and provide an overview of the structure and mechanism of action of approved oligonucleotide drugs including gene silencing agents, aptamers and mRNA vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL
...