Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 352: 119956, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38198844

ABSTRACT

Changes in river water quality often follow typical trajectories characterized by sequential phases of degradation and recovery induced by management measures, typically achieved with combinations of legislative and technological interventions. However, the key question about the effectiveness of the different types of legal interventions - source control, use-related, and end-of-pipe - remains poorly understood. With the case of phosphorus (P), which is a valuable indicator of surface water quality and a widespread target of legislation at various governance levels in order to control eutrophication of water bodies, we quantified the relation between point source loading of P and resulting river water quality for a multidecadal trajectory of the river Ruhr (Germany). In particular, we analysed P-related legislation targeting point source pollution enforced at EU, national, state, and local level and linked their development with measured total phosphorus (TP) concentrations in the river Ruhr (Germany). To this end, we combined archival data with information in the literature and conducted interviews with contemporary witnesses to describe and quantify the efficacy of each legislative approach. Although not specifically targeted at P reduction, end-of-pipe measures (sewer systems and wastewater treatment plants (WWTP)) reduced TP inputs to surface waters already in the 1960s and 1970s, curbing TP inputs to the Ruhr by 38% in 1980. The first targeted source control legislation - the banning of phosphates in textile detergents in 1981 - effectively reduced TP concentrations in WWTP influents by 36% since 1990. In combination with stronger end-of-pipe legislation focusing on P elimination in WWTP since the 1990s, TP concentrations in WWTP effluents were reduced by 86% at the end of the 1990s and by 92% in 2021. Complete and successful source control for textile detergents made use-related legislation redundant. Our study demonstrates that source control measures should be prioritized, because they are the fastest way to curb emissions. These findings provide insights that can inform efficient decision-making regarding water quality in a trajectory perspective of hierarchical governance and technological needs, as well as effective policy-making and management for other pollutants requiring control from point sources.


Subject(s)
Water Pollutants, Chemical , Water Quality , Rivers , Environmental Monitoring , Phosphorus/analysis , Detergents/analysis , Water Pollutants, Chemical/analysis , Nitrogen/analysis
2.
Nat Commun ; 15(1): 809, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280872

ABSTRACT

Aquatic ecosystems are threatened by eutrophication from nutrient pollution. In lakes, eutrophication causes a plethora of deleterious effects, such as harmful algal blooms, fish kills and increased methane emissions. However, lake-specific responses to nutrient changes are highly variable, complicating eutrophication management. These lake-specific responses could result from short-term stochastic drivers overshadowing lake-independent, long-term relationships between phytoplankton and nutrients. Here, we show that strong stoichiometric long-term relationships exist between nutrients and chlorophyll a (Chla) for 5-year simple moving averages (SMA, median R² = 0.87) along a gradient of total nitrogen to total phosphorus (TN:TP) ratios. These stoichiometric relationships are consistent across 159 shallow lakes (defined as average depth < 6 m) from a cross-continental, open-access database. We calculate 5-year SMA residuals to assess short-term variability and find substantial short-term Chla variation which is weakly related to nutrient concentrations (median R² = 0.12). With shallow lakes representing 89% of the world's lakes, the identified stoichiometric long-term relationships can globally improve quantitative nutrient management in both lakes and their catchments through a nutrient-ratio-based strategy.


Subject(s)
Ecosystem , Lakes , Chlorophyll A , Environmental Monitoring , Eutrophication , Harmful Algal Bloom , Nutrients , Phosphorus/analysis , Nitrogen/analysis , China
3.
Sci Total Environ ; 912: 169460, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38128674

ABSTRACT

Reservoirs regulate water flow and pollutant transport in catchments. However, climate change can significantly impact their ability to perform this function. This study analysed a multi-decadal time series of data to examine the complex relationship between climate and nutrient pollution trends in the Möhne reservoir catchment. The study aimed at understanding the effect of the reservoir on downstream nutrient pollution in the face of a changing climate. The analysis revealed that upstream nutrient concentrations were higher than downstream, indicating a general nutrient-trapping effect of the reservoir. Upstream stations exhibited a declining trend in total nitrogen (TN) and total phosphorus (TP) concentrations. This was due to improved wastewater management and reduced nutrient mobilisation resulting from decreasing surface runoff and streamflow. At the downstream station, whereas TN concentrations decreased, TP concentrations mildly increased. These opposite downstream trends were likely due to rising temperatures and declining dissolved oxygen concentration within the reservoir, which might have favoured nitrogen denitrification and internal phosphorus loading, causing the decline and increase in downstream TN and TP concentrations, respectively. The contrasting downstream TN and TP trends alter the nutrient stoichiometry, which can profoundly affect the ecosystem's biogeochemical functioning. Therefore, in a warming climate, reservoirs may modulate nitrogen and phosphorus nutrients differently, leading to ecological discontinuities along river networks due to changes in TN-to-TP ratios. The study highlights the need to develop adaptable and precise nutrient pollution management strategies in reservoir catchments to address the challenges of climate change effectively.

4.
Environ Int ; 183: 108371, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103345

ABSTRACT

There is increasing awareness that chemical pollution of freshwater systems with complex mixtures of chemicals from domestic sources, agriculture and industry may cause a substantial chemical footprint on water organisms, pushing aquatic ecosystems outside the safe operating space. The present study defines chemical footprints as the risk that chemicals or chemical mixtures will have adverse effects on a specific group of organisms. The aim is to characterise these chemical footprints in European streams based on a unique and uniform screening of more than 600 chemicals in 445 surface water samples, and to derive site- and compound-specific information for management prioritisation purposes. In total, 504 pesticides, biocides, pharmaceuticals and other compounds have been detected, including frequently occurring and site-specific compounds with concentrations up to 74 µg/L. Key finding is that three-quarter of the investigated sites in 22 European river basins exceed established thresholds for chemical footprints in freshwater, leading to expected acute or chronic impacts on aquatic organisms. The largest footprints were recorded on invertebrates, followed by algae and fish. More than 70 chemicals exceed thresholds of chronic impacts on invertebrates. For all organism groups, pesticides and biocides were the main drivers of chemical footprints, while mixture impacts were particularly relevant for invertebrates. No clear significant correlation was found between chemical footprints and the urban discharge fractions, suggesting that effluent-specific quality rather than the total load of treated wastewater in the aquatic environment and the contribution of diffuse sources, e.g. from agriculture, determine chemical footprints.


Subject(s)
Disinfectants , Pesticides , Water Pollutants, Chemical , Animals , Rivers/chemistry , Ecosystem , Water Pollutants, Chemical/analysis , Invertebrates , Pesticides/analysis , Aquatic Organisms , Water , Environmental Monitoring
5.
Water Res ; 243: 120347, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37490830

ABSTRACT

High-frequency nitrate-N (NO3--N) data are increasingly available, while accurate assessments of in-stream NO3--N retention in large streams and rivers require a better capture of complex river hydrodynamic conditions. This study demonstrates a fusion framework between high-frequency water quality data and hydrological transport models, that (1) captures river hydraulics and their impacts on solute signal propagation through river hydrodynamic modeling, and (2) infers in-stream retention as the differences between conservatively traced and reactively observed NO3--N signals. Using this framework, continuous 15-min estimates of NO3--N retention were derived in a 6th-order reach of the lower Bode River (27.4 km, central Germany), using long-term sensor monitoring data during a period of normal flow from 2015 to 2017 and a period of drought from 2018 to 2020. The unique NO3--N retention estimates, together with metabolic characteristics, revealed insightful seasonal patterns (from high net autotrophic removal in late-spring to lower rates, to net heterotrophic release during autumn) and drought-induced variations of those patterns (reduced levels of net removal and autotrophic nitrate removal largely buffered by heterotrophic release processes, including organic matter mineralization). Four clusters of diel removal patterns were identified, potentially representing changes in dominant NO3--N retention processes according to seasonal and hydrological conditions. For example, dominance of autotrophic NO3--N retention extended more widely across seasons during the drought years. Such cross-scale patterns and changes under droughts are likely co-determined by catchment and river environments (e.g., river primary production, dissolved organic carbon availability and its quality), which resulted in more complex responses to the sequential droughts. Inferences derived from this novel data-model fusion provide new insights into NO3- dynamics and ecosystem function of large streams, as well as their responses to climate variability. Moreover, this framework can be flexibly transferred across sites and scales, thereby complementing high-frequency monitoring to identify in-stream retention processes and to inform river management.


Subject(s)
Nitrates , Rivers , Droughts , Seasons , Ecosystem , Environmental Monitoring/methods
7.
Sci Total Environ ; 890: 164421, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37244620

ABSTRACT

Nutrient and carbon dynamics within the river-estuary-coastal water systems are key processes in understanding the flux of matter from the terrestrial environment to the ocean. Here, we analysed those dynamics by following a sampling approach based on the travel time of water and an advanced calculation of nutrient fluxes in the tidal part. We started with a nearly Lagrangian sampling of the river (River Elbe, Germany; 580 km within 8 days). After a subsequent investigation of the estuary, we followed the plume of the river by raster sampling the German Bight (North Sea) using three ships simultaneously. In the river, we detected intensive longitudinal growth of phytoplankton connected with high oxygen saturation and pH values and an undersaturation of CO2, whereas concentrations of dissolved nutrients declined. In the estuary, the Elbe shifted from an autotrophic to a heterotrophic system: Phytoplankton died off upstream of the salinity gradient, causing minima in oxygen saturation and pH, supersaturation of CO2, and a release of nutrients. In the shelf region, phytoplankton and nutrient concentrations were low, oxygen was close to saturation, and pH was within a typical marine range. Over all sections, oxygen saturation was positively related to pH and negatively to pCO2. Corresponding to the significant particulated nutrient flux via phytoplankton, flux rates of dissolved nutrients from river into estuary were low and determined by depleted concentrations. In contrast, fluxes from the estuary to the coastal waters were higher and the pattern was determined by tidal current. Overall, the approach is appropriate to better understand land-ocean fluxes, particularly to illuminate the importance of these fluxes under different seasonal and hydrological conditions, including flood and drought events.


Subject(s)
Estuaries , Rivers , Carbon/analysis , Carbon Dioxide/analysis , Phytoplankton , Water/analysis , Nutrients/analysis , Environmental Monitoring
8.
Sci Total Environ ; 837: 155689, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35526618

ABSTRACT

The hyporheic zone underneath stream channels is considered a biogeochemical hotspot reducing nutrient loads being transported downstream due to its high surface-to-volume ratio in combination with the hyporheic exchange. However, the effect of environmental stressors such as high amounts of fine sediment (FS; grain size <0.2 mm) on nutrient cycling in the hyporheic zone are not well understood. Physical clogging caused by fine sediment (FS) decreases the hyporheic exchange, thus, diminishing its potential to reduce nutrient loads despite increasing its surface-to-volume ratio. We determined the effect of physical clogging on nutrient cycling based on net change rates of dissolved inorganic nitrogen (DIN; nitrate-N, ammonium-N), soluble reactive phosphorus (SRP), and dissolved organic carbon (DOC) for a sand and gravel hyporheic zone. We performed three experimental runs in 12 flumes with four-week duration each following a factorial design. First, we determined nutrient cycling in sand and gravel in absence of clogging, and then tested the clogging effect for each sediment type under increasing clogging (0-480 g of FS addition increasing by 60 g per level). Without clogging, gravel acted as a source of nitrate-N; and both sand and gravel released SRP. Regardless of the clogging level and the resulting reduced hyporheic exchange, we found no changes in DOC and nitrate-N dynamics but net-release of ammonium-N and SRP for gravel. In contrast, in sand, physical clogging inhibited DOC release for flumes with the higher FS. We propose that not physical clogging but DOC availability limited the nutrient uptake, as molar ratios of DOC to DIN and SRP ranged 1.2-1.5 and 77-191, respectively, indicating severe C limitation of N-uptake and partial C limitation of P-uptake. Our results suggest an interplay between nutrient molar ratios and physical clogging, which emphasize the interactions between hydrology and the stoichiometry of organic carbon, nitrogen and phosphorus in the hyporheic zone.


Subject(s)
Ammonium Compounds , Phosphorus , Carbon , Geologic Sediments , Nitrates/analysis , Nitrogen/analysis , Sand
9.
Water Res ; 217: 118382, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35413560

ABSTRACT

There is significant debate about why less than half of European rivers and streams are in good ecological status, despite decades of intense regulatory efforts. Of the multiple stressors that are recognized as potential contributors to stream degradation, we focus on discharge from 26,500 European wastewater treatment plants (WWTPs). We tested the hypothesis that stream ecological status degradation across Europe is related to the local intensity of wastewater discharge, with an expected stream-order (ω) dependence based on the scaling laws that govern receiving stream networks. We found that ecological status in streams (ω≤3) declined consistently with increasing urban wastewater discharge fraction of stream flow (UDF) across river types and basins. In contrast, ecological status in larger rivers (ω≥4) was not related to UDF. From a continental-scale logistic regression model (accuracy 86%) we identified an ecologically critical threshold UDF = 6.5% ± 0.5. This is exceeded by more than one third of WWTPs in Europe, mostly discharging into smaller streams. Our results suggest that new receiving water-specific strategies for wastewater management are needed to achieve good ecological status in smaller streams.


Subject(s)
Ecosystem , Water Purification , Environmental Monitoring/methods , Rivers , Wastewater
10.
Sci Total Environ ; 828: 154243, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35245548

ABSTRACT

On their way from inland to the ocean, flowing water bodies, their constituents and their biotic communities are exposed to complex transport and transformation processes. However, detailed process knowledge as revealed by Lagrangian measurements adjusted to travel time is rare in large rivers, in particular at hydrological extremes. To fill this gap, we investigated autotrophic processes, heterotrophic carbon utilization, and micropollutant concentrations applying a Lagrangian sampling design in a 600 km section of the River Elbe (Germany) at historically low discharge. Under base flow conditions, we expect the maximum intensity of instream processes and of point source impacts. Phytoplankton biomass and photosynthesis increased from upstream to downstream sites but maximum chlorophyll concentration was lower than at mean discharge. Concentrations of dissolved macronutrients decreased to almost complete phosphate depletion and low nitrate values. The longitudinal increase of bacterial abundance and production was less pronounced than in wetter years and bacterial community composition changed downstream. Molecular analyses revealed a longitudinal increase of many DOM components due to microbial production, whereas saturated lipid-like DOM, unsaturated aromatics and polyphenols, and some CHOS surfactants declined. In decomposition experiments, DOM components with high O/C ratios and high masses decreased whereas those with low O/C ratios, low masses, and high nitrogen content increased at all sites. Radiocarbon age analyses showed that DOC was relatively old (890-1870 years B.P.), whereas the mineralized fraction was much younger suggesting predominant oxidation of algal lysis products and exudates particularly at downstream sites. Micropollutants determining toxicity for algae (terbuthylazine, terbutryn, isoproturon and lenacil), hexachlorocyclohexanes and DDTs showed higher concentrations from the middle towards the downstream part but calculated toxicity was not negatively correlated to phytoplankton. Overall, autotrophic and heterotrophic process rates and micropollutant concentrations increased from up- to downstream reaches, but their magnitudes were not distinctly different to conditions at medium discharges.


Subject(s)
Droughts , Rivers , Autotrophic Processes , Dissolved Organic Matter , Phytoplankton
11.
Water Res ; 201: 117262, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34118650

ABSTRACT

Despite elaborate regulation of agricultural pesticides, their occurrence in non-target areas has been linked to adverse ecological effects on insects in several field investigations. Their quantitative role in contributing to the biodiversity crisis is, however, still not known. In a large-scale study across 101 sites of small lowland streams in Central Europe, Germany we revealed that 83% of agricultural streams did not meet the pesticide-related ecological targets. For the first time we identified that agricultural nonpoint-source pesticide pollution was the major driver in reducing vulnerable insect populations in aquatic invertebrate communities, exceeding the relevance of other anthropogenic stressors such as poor hydro-morphological structure and nutrients. We identified that the current authorisation of pesticides, which aims to prevent unacceptable adverse effects, underestimates the actual ecological risk as (i) measured pesticide concentrations exceeded current regulatory acceptable concentrations in 81% of the agricultural streams investigated, (ii) for several pesticides the inertia of the authorisation process impedes the incorporation of new scientific knowledge and (iii) existing thresholds of invertebrate toxicity drivers are not protective by a factor of 5.3 to 40. To provide adequate environmental quality objectives, the authorisation process needs to include monitoring-derived information on pesticide effects at the ecosystem level. Here, we derive such thresholds that ensure a protection of the invertebrate stream community.


Subject(s)
Pesticides , Water Pollutants, Chemical , Agriculture , Animals , Ecosystem , Environmental Monitoring , Europe , Germany , Insecta , Invertebrates , Pesticides/analysis , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
12.
BMC Genom Data ; 22(1): 4, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33568071

ABSTRACT

BACKGROUND: Multi-parent populations (MPPs) are important resources for studying plant genetic architecture and detecting quantitative trait loci (QTLs). In MPPs, the QTL effects can show various levels of allelic diversity, which can be an important factor influencing the detection of QTLs. In MPPs, the allelic effects can be more or less specific. They can depend on an ancestor, a parent or the combination of parents in a cross. In this paper, we evaluated the effect of QTL allelic diversity on the QTL detection power in MPPs. RESULTS: We simulated: a) cross-specific QTLs; b) parental and ancestral QTLs; and c) bi-allelic QTLs. Inspired by a real application in sugar beet, we tested different MPP designs (diallel, chessboard, factorial, and NAM) derived from five or nine parents to explore the ability to sample genetic diversity and detect QTLs. Using a fixed total population size, the QTL detection power was larger in MPPs with fewer but larger crosses derived from a reduced number of parents. The use of a larger set of parents was useful to detect rare alleles with a large phenotypic effect. The benefit of using a larger set of parents was however conditioned on an increase of the total population size. We also determined empirical confidence intervals for QTL location to compare the resolution of different designs. For QTLs representing 6% of the phenotypic variation, using 1600 F2 offspring individuals, we found average 95% confidence intervals over different designs of 49 and 25 cM for cross-specific and bi-allelic QTLs, respectively. CONCLUSIONS: MPPs derived from less parents with few but large crosses generally increased the QTL detection power. Using a larger set of parents to cover a wider genetic diversity can be useful to detect QTLs with a reduced minor allele frequency when the QTL effect is large and when the total population size is increased.


Subject(s)
Alleles , Beta vulgaris/genetics , Quantitative Trait Loci/genetics
13.
Water Res ; 193: 116887, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33582496

ABSTRACT

Algae, as primary producers in riverine ecosystems, are found in two distinct habitats: benthic and pelagic algae typically prevalent in shallow/small and deep/large streams, respectively. Over an entire river continuum, spatiotemporal patterns of the two algal communities reflect specificity in habitat preference determined by geomorphic structure, hydroclimatic controls, and spatiotemporal heterogeneity in nutrient loads from point- and diffuse-sources. By representing these complex interactions between geomorphic, hydrologic, geochemical, and ecological processes, we present here a new river-network-scale dynamic model (CnANDY) for pelagic (A) and benthic (B) algae competing for energy and one limiting nutrient (phosphorus, P). We used the urbanized Weser River Basin in Germany (7th-order; ~8.4 million population; ~46 K km2) as a case study and analyzed simulations for equilibrium mass and concentrations under steady median river discharge. We also examined P, A, and B spatial patterns in four sub-basins. We found an emerging pattern characterized by scaling of P and A concentrations over stream-order ω, whereas B concentration was described by three distinct phases. Furthermore, an abrupt algal regime shift occurred in intermediate streams from B dominance in ω≤3 to exclusive A presence in ω≥6. Modeled and long-term basin-scale monitored dissolved P concentrations matched well for ω>4, and with overlapping ranges in ω<3. Power-spectral analyses for the equilibrium P, A, and B mass distributions along hydrological flow paths showed stronger clustering compared to geomorphological attributes, and longer spatial autocorrelation distance for A compared to B. We discuss the implications of our findings for advancing hydro-ecological concepts, guiding monitoring, informing management of water quality, restoring aquatic habitat, and extending CnANDY model to other river basins.


Subject(s)
Ecosystem , Rivers , Environmental Monitoring , Germany , Phosphorus/analysis
14.
Sci Total Environ ; 769: 144324, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33482551

ABSTRACT

Meeting ecological and water quality standards in lotic ecosystems is often failed due to multiple stressors. However, disentangling stressor effects and identifying relevant stressor-effect-relationships in complex environmental settings remain major challenges. By combining state-of-the-art methods from ecotoxicology and aquatic ecosystem analysis, we aimed here to disentangle the effects of multiple chemical and non-chemical stressors along a longitudinal land use gradient in a third-order river in Germany. We distinguished and evaluated four dominant stressor categories along this gradient: (1) Hydromorphological alterations: Flow diversity and substrate diversity correlated with the EU-Water Framework Directive based indicators for the quality element macroinvertebrates, which deteriorated at the transition from near-natural reference sites to urban sites. (2) Elevated nutrient levels and eutrophication: Low to moderate nutrient concentrations together with complete canopy cover at the reference sites correlated with low densities of benthic algae (biofilms). We found no more systematic relation of algal density with nutrient concentrations at the downstream sites, suggesting that limiting concentrations are exceeded already at moderate nutrient concentrations and reduced shading by riparian vegetation. (3) Elevated organic matter levels: Wastewater treatment plants (WWTP) and stormwater drainage systems were the primary sources of bioavailable dissolved organic carbon. Consequently, planktonic bacterial production and especially extracellular enzyme activity increased downstream of those effluents showing local peaks. (4) Micropollutants and toxicity-related stress: WWTPs were the predominant source of toxic stress, resulting in a rapid increase of the toxicity for invertebrates and algae with only one order of magnitude below the acute toxic levels. This toxicity correlates negatively with the contribution of invertebrate species being sensitive towards pesticides (SPEARpesticides index), probably contributing to the loss of biodiversity recorded in response to WWTP effluents. Our longitudinal approach highlights the potential of coordinated community efforts in supplementing established monitoring methods to tackle the complex phenomenon of multiple stress.

15.
Ecol Evol ; 9(6): 3416-3433, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30962902

ABSTRACT

Mongolia's salmonids are suffering extensive population declines; thus, more comprehensive fisheries management and conservation strategies are required. To assist with their development, a better understanding of the genetic structure and diversity of these threatened species would allow a more targeted approach for preserving genetic variation and ultimately improve long-term species recoveries. It is hypothesized that the unfragmented river basins that have persisted across Mongolia provide unobstructed connectivity for resident salmonid species. Thus, genetic structure is expected to be primarily segregated between major river basins. We tested this hypothesis by investigating the population structure for three salmonid genera (Hucho, Brachymystax and Thymallus) using different genetic markers to identify evolutionarily significant units (ESUs) and priority rivers to focus conservation efforts. Fish were assigned to separate ESUs when the combined evidence of mitochondrial and nuclear data indicated genetic isolation. Hucho taimen exhibited a dichotomous population structure forming two ESUs, with five priority rivers. Within the Brachymystax genus, there were three B. lenokESUs and one B. tumensisESU, along with six priority rivers. While B. tumensiswas confirmed to display divergent mtDNA haplotypes, haplotype sharing between these two congeneric species was also identified. For T. baicalensis,only a single ESU was assigned, with five priority rivers identified plus Lake Hovsgol. Additionally, we confirmed that T. nigrescens from Lake Hovsgol is a synonym of T. baicalensis. Across all species, the most prominent pattern was strong differentiation among major river basins with low differentiation and weak patterns of isolation by distance within river basins, which corroborated our hypothesis of high within-basin connectivity across Mongolia. This new genetic information provides authorities the opportunity to distribute resources for management between ESUs while assigning additional protection for the more genetically valuable salmonid rivers so that the greatest adaptive potential within each species can be preserved.

16.
Sci Total Environ ; 667: 769-779, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30851610

ABSTRACT

Phosphorus inputs to many rivers have been reduced in recent decades to mitigate the damaging effects of eutrophication. However, reductions in total phosphorus (TP) inputs rarely correspond with ecological improvements of the river ecosystem. We analyzed a unique weekly long-term data set ranging from 1966 to 2013, covering seven monitoring sites in the Ruhr River in Germany. We identified the relative importance of different TP sources, quantified long-term trajectories of degradation and recovery, including the dynamics of TP retention, and assessed the response of chlorophyll-a (Chl-a) to increasing and decreasing TP concentrations along the whole river gradient. We found that the decline of TP loads at the beginning of the 1980s was dominantly triggered by a reduction of point sources. The cumulative TP retention capacity increased along the river gradient, increasing from effectively zero in the upstream section, to 26% and 36% of TP input in the upper midstream and lower downstream section. This pattern is consistent with higher prevalence of impoundments and weirs downstream, indicating that TP retention is likely associated with sedimentation posing a potential risk due to remobilization of legacy phosphorus. Degradation and recovery pathways differ from upstream to downstream. Along the river continuum we found three distinct types of reversible trajectories: 1. instream storage only during the recovery phase (upstream only); 2. instream storage in both degradation and recovery phases, but with significantly different characteristics depending on TP input load (midstream only); 3. higher instream storage during the recovery phase (downstream only). While in-stream TP loads may recover rapidly, the ecological response to altered nutrient inputs can be associated with considerable time-lags and decouplings between Chl-a and TP concentrations. Therefore, river systems may not return to historically good ecological status solely from massive nutrient reduction, but may also require other management activities.

17.
Sci Total Environ ; 697: 134145, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-32380617

ABSTRACT

We employed the well-established Horton-Strahler, hierarchical, stream-order (ω) scheme to investigate scaling of nutrient loads (P and N) from ~845 wastewater treatment plants (WWTPs) distributed along the river network in urbanized Weser River, the largest national basin in Germany (~46K km2; ~8.4 million population). We estimated hydrologic and water quality impacts at the reach- and basin-scales, at two steady river discharge conditions (median flow, QR50; low-flow, QR90). Of the five WWTPs class-sizes (1 ≤ k ≤ 5), ~68% discharge to small low-order streams (ω < 3). We found large variations in capacity to dilute WWTP nutrient loads because of variability in (1) treated wastewater discharge (QU) within and among different class-sizes, and (2) river discharge (QR) within low-order streams (ω < 3) resulting from differences in drainage areas. For QR50, reach-scale water quality impairment assessed by nutrient concentration was likely at 136 (~16%) locations for P and 15 locations (~2%) for N. About 90% of these locations were lower-order streams (ω < 3). At QR50 and only with dilution, basin-scale cumulative nutrient loads from multiple upstream WWTPs increase impaired locations to 266 (~32% of total) for P. Considering in-stream uptake decreased P-impaired streams to 225 (~27%), suggesting the dominant role of dilution in the Weser River basin. Role of in-stream uptake diminished along the flow paths, while dilution in larger streams (4 ≤ ω ≤ 7) minimizes the impact of WWTP loads. Under QR90 conditions [(QR50/QR90) ~ 2.5], water quality impaired locations will likely double for the basin-scale analyses. Long-term water quality data suggested that diffuse sources are the primary contributors for water quality impairments in large streams. Our data-modeling synthesis approach is transferable to other urbanized river basins and extends understanding of point source impacts on water quality across spatial scales.

18.
J Theor Biol ; 442: 66-78, 2018 04 07.
Article in English | MEDLINE | ID: mdl-29337262

ABSTRACT

In riverine ecosystems primary production is principally possible in two habitats: in the benthic layer by sessile algae and in the surface water by planktonic algae being transported downstream. The relevance of these two habitats generally changes along the rivers' continuum. However, analyses of the interaction of algae in these two habitats and their controlling factors in riverine ecosystems are, so far, very rare. We use a simplified advection-diffusion model system combined with ecological process kinetics to analyse the interaction of benthic and planktonic algae and nutrients along idealised streams and rivers at regional to large scales. Because many of the underlying processes affecting algal dynamics are influenced by depth, we focus particularly on the impact of river depth on this interaction. At constant environmental conditions all state variables approach stable spatial equilibria along the river, independent of the boundary conditions at the upstream end. Because our model is very robust against changes of turbulent diffusion and stream velocity, these spatial equilibria can be analysed by a simplified ordinary differential equation (ode) version of our model. This model variant reveals that at shallower river depths, phytoplankton can exist only when it is subsidised by detaching benthic algae, and in turn, at deeper river depths, benthic algae can exist only in low biomasses which are subsidised by sinking planktonic algae. We generalise the spatial dynamics of the model system using different conditions at the upstream end of the model, which mimic various natural or anthropogenic factors (pristine source, dam, inflow of a waste water treatment plant, and dilution from e.g. a tributary) and analyse how these scenarios influence different aspects of the longitudinal spatial dynamics of the full spatial model: the relation of spatial equilibrium to spatial maximum, the distance to the spatial maximum, and the response length. Generally, our results imply that shallow systems recover within significantly shorter distances from spatially distinct disturbances when compared to deep systems, independent of the type of disturbance.


Subject(s)
Algorithms , Ecosystem , Microalgae/growth & development , Models, Biological , Biomass , Phytoplankton/growth & development , Rivers/microbiology
19.
Water Res ; 115: 162-171, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28279937

ABSTRACT

Ecological theory predicts that the relative importance of benthic to planktonic primary production usually changes along the rivers' continuum from a predomination of benthic algae in lower stream orders to a predomination of planktonic algae at higher orders. Underlying mechanisms driving the interaction between algae in these habitats, its controlling factors and consequences for riverine ecosystems are, however, only partly understood. We present a mechanistic analysis of the governing ecological processes using a simplified, numerical model and examine how abiotic factors and biotic interactions influence benthic and planktonic algae by changing resource competition. We compare the outcome of the model with the results of a factorial mesocosm experiment mimicking the parameter spaces of the model. The results show a remarkable similarity with regard to the temporal development of benthic and pelagic algal biomass and shifting dominance patterns. In particular we analyse the effects of the pathways of nutrient supply (upwelling from the hyporheic zone, direct supply to the surface water, or via both pathways) and grazing in a gradient of river depths. Our results show that detachment of benthic algae, sinking of planktonic algae and the pathway of nutrient supply are key processes determining the respective algal biomass distributions particularly in shallow and intermediate deep systems. Increasing nutrient supply increases algal biomasses, but does not change the general pattern of the interactions. Decreasing light supply decreases the dominance of planktonic algae, but increases dissolved nutrients. At intermediate to high grazing rates algal biomass can be controlled by grazers, but however, at high grazing rates, dissolved nutrients accumulate in the surface water. Our results indicate that nutrient pathways, resource competition and internal control by grazing need to be considered explicitly for the understanding and explanation of eutrophication phenomena in riverine ecosystems. As a consequence, ecologically effective eutrophication management of running water systems has to go beyond the control of nutrient emissions or the achievement of limiting threshold values in the receiving waters, but requires the consideration of the nutrient pathways (surface water versus groundwater) and the shifting biological controls from lower to higher order stream ecosystems.


Subject(s)
Ecosystem , Eutrophication , Biomass , Models, Theoretical , Rivers
20.
J Environ Manage ; 196: 1-7, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28284126

ABSTRACT

Problem complexity is often assumed to hamper effective environmental policy delivery. However, this claim is hardly substantiated, given the dominance of qualitative small-n designs in environmental governance research. We studied 37 types of contemporary problems defined by German water governance to assess the impact of problem complexity on policy delivery through public authorities. The analysis is based on a unique data set related to these problems, encompassing both in-depth interview-based data on complexities and independent official data on policy delivery. Our findings show that complexity in fact tends to delay implementation at the stage of planning. However, different dimensions of complexity (goals, variables, dynamics, interconnections, and uncertainty) impact on the different stages of policy delivery (goal formulation, stages and degrees of implementation) in various ways.


Subject(s)
Environmental Policy , Environment , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...