Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 39(24): 6989-92, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25503048

ABSTRACT

The origin of a 1/f noise contribution in the long-term carrier-envelope phase (CEP) measurements of mode-locked lasers is discussed. Using two different collinear interferometers for the out-of-loop characterization of feed-forward stabilized Ti:sapphire oscillators, we suppress a possible technical origin of 1/f noise to the extent possible. Both measurements indicate a lower limit of CEP frequency noise of 1 mHz/√Hz. Investigating several possible origins of this noise floor, we find a good agreement with a quantum noise mechanism that is directly induced by intracavity-amplified spontaneous emission (ASE). These findings enable direct access to ASE noise in short-pulse oscillators, which is very hard to characterize via repetition rate fluctuations. Finally, we discuss the possible consequences for frequency-comb-based timekeeping and frequency metrology, as well as for attosecond science.

2.
Opt Lett ; 39(3): 544-7, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24487861

ABSTRACT

A method for improved performance of feed-forward carrier-envelope phase stabilization in amplified laser sources is presented and experimentally demonstrated. The phase stabilization scheme is applicable for a broad range of repetition rates spanning from subhertz to 100 kHz. The method relies on driving an acousto-optic frequency shifter by few-cycle transients. The phase of these transients suitably controls the grating phase of the generated index grating inside the shifter material. This approach removes beam pointing as well as amplitude noise issues observed in continuously driven feed-forward schemes. The synthesis of these gratings can be understood as the acoustic equivalent of mode-locking or acoustic frequency combs.

3.
Opt Lett ; 37(9): 1541-3, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22555731

ABSTRACT

We discuss the influence of the higher-order Kerr effect (HOKE) in wide bandgap solids at extreme intensities below the onset of optically induced damage. Using different theoretical models, we employ multiphoton absorption rates to compute the nonlinear refractive index by a Kramers-Kronig transform. Within this theoretical framework we provide an estimate for the appearance of significant deviations from the standard optical Kerr effect predicting a linear index change with intensity. We discuss the role of the observed saturation behavior in practically relevant situations, including Kerr lens mode-locking and supercontinuum generation in photonic crystal fibers. Furthermore, we present experimental data from a multiwave mixing experiment in BaF2, which can be explained by the appearance of the HOKE.

SELECTION OF CITATIONS
SEARCH DETAIL
...