Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Integr Bioinform ; 11(2): 239, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24953454

ABSTRACT

VANESA is a modeling software for the automatic reconstruction and analysis of biological networks based on life-science database information. Using VANESA, scientists are able to model any kind of biological processes and systems as biological networks. It is now possible for scientists to automatically reconstruct important molecular systems with information from the databases KEGG, MINT, IntAct, HPRD, and BRENDA. Additionally, experimental results can be expanded with database information to better analyze the investigated elements and processes in an overall context. Users also have the possibility to use graph theoretical approaches in VANESA to identify regulatory structures and significant actors within the modeled systems. These structures can then be further investigated in the Petri net environment of VANESA. It is platform-independent, free-of-charge, and available at http://vanesa.sf.net.


Subject(s)
Computational Biology/methods , Software , Systems Biology/methods , Algorithms , Automation , Cholesteatoma/metabolism , Computer Graphics , Computer Simulation , Database Management Systems , Databases, Factual , Databases, Genetic , Gene Regulatory Networks , Humans , Inflammation , Internet , Models, Biological , Oligonucleotide Array Sequence Analysis , User-Computer Interface
2.
PLoS One ; 7(12): e52718, 2012.
Article in English | MEDLINE | ID: mdl-23285167

ABSTRACT

BACKGROUND: Cholesteatoma is a gradually expanding destructive epithelial lesion within the middle ear. It can cause extensive local tissue destruction in the temporal bone and can initially lead to the development of conductive hearing loss via ossicular erosion. As the disease progresses, sensorineural hearing loss, vertigo or facial palsy may occur. Cholesteatoma may promote the spread of infection through the tegmen of the middle ear and cause meningitis or intracranial infections with abscess formation. It must, therefore, be considered as a potentially life-threatening middle ear disease. METHODS AND FINDINGS: In this study, we investigated differentially expressed genes in human cholesteatomas in comparison to regular auditory canal skin using Whole Human Genome Microarrays containing 19,596 human genes. In addition to already described up-regulated mRNAs in cholesteatoma, such as MMP9, DEFB2 and KRT19, we identified 3558 new cholesteatoma-related transcripts. 811 genes appear to be significantly differentially up-regulated in cholesteatoma. 334 genes were down-regulated more than 2-fold. Significantly regulated genes with protein metabolism activity include matrix metalloproteinases as well as PI3, SERPINB3 and SERPINB4. Genes like SPP1, KRT6B, PRPH, SPRR1B and LAMC2 are known as genes with cell growth and/or maintenance activity. Transport activity genes and signal transduction genes are LCN2, GJB2 and CEACAM6. Three cell communication genes were identified; one CDH19 and two from the S100 family. CONCLUSIONS: This study demonstrates that the expression profile of cholesteatoma is similar to a metastatic tumour and chronically inflamed tissue. Based on the investigated profiles we present novel protein-protein interaction and signal transduction networks, which include cholesteatoma-regulated transcripts and may be of great value for drug targeting and therapy development.


Subject(s)
Cholesteatoma, Middle Ear/genetics , Transcriptome , Cholesteatoma, Middle Ear/metabolism , Cholesteatoma, Middle Ear/pathology , Cluster Analysis , Computational Biology/methods , Connexin 26 , Connexins , Gene Expression Profiling , Gene Expression Regulation , Genomics , Humans , Keratins/genetics , Keratins/metabolism , Protein Interaction Mapping , Protein Interaction Maps , Reproducibility of Results , Signal Transduction
3.
Stud Health Technol Inform ; 162: 182-203, 2011.
Article in English | MEDLINE | ID: mdl-21685572

ABSTRACT

The understanding of the molecular mechanism of cell-to-cell communication is fundamental for system biology. Up to now, the main objectives of bioinformatics have been reconstruction, modeling and analysis of metabolic, regulatory and signaling processes, based on data generated from high-throughput technologies. Cell-to-cell communication or quorum sensing (QS), the use of small molecule signals to coordinate complex patterns of behavior in bacteria, has been the focus of many reports over the past decade. Based on the quorum sensing process of the organism Aliivibrio salmonicida, we aim at developing a functional Petri net, which will allow modeling and simulating cell-to-cell communication processes. Using a new editor-controlled information system called VANESA (http://vanesa.sf.net), we present how to combine different fields of studies such as life-science, database consulting, modeling, visualization and simulation for a semi-automatic reconstruction of the complex signaling quorum sensing network. We show how cell-to-cell communication processes and information-flow within a cell and across cell colonies can be modeled using VANESA and how those models can be simulated with Petri net network structures in a sophisticated way.


Subject(s)
Models, Biological , Quorum Sensing , Cell Communication , Computational Biology , Computer Simulation , Signal Transduction
4.
In Silico Biol ; 10(1): 27-48, 2010.
Article in English | MEDLINE | ID: mdl-22430220

ABSTRACT

The understanding of the molecular mechanism of cell-to-cell communication is fundamental for system biology. Up to now, the main objectives of bioinformatics have been reconstruction, modeling and analysis of metabolic, regulatory and signaling processes, based on data generated from high-throughput technologies. Cell-to-cell communication or quorum sensing (QS), the use of small molecule signals to coordinate complex patterns of behavior in bacteria, has been the focus of many reports over the past decade. Based on the quorum sensing process of the organism Aliivibrio salmonicida, we aim at developing a functional Petri net, which will allow modeling and simulating cell-to-cell communication processes. Using a new editor-controlled information system called VANESA (http://vanesa.sf.net), we present how to combine different fields of studies such as life-science, database consulting, modeling, visualization and simulation for a semi-automatic reconstruction of the complex signaling quorum sensing network. We show how cell-to-cell communication processes and information-flow within a cell and across cell colonies can be modeled using VANESA and how those models can be simulated with Petri net network structures in a sophisticated way.


Subject(s)
Computer Simulation , Models, Biological , Quorum Sensing , Software , Algorithms , Aliivibrio salmonicida/physiology , Cell Communication , Feedback, Physiological , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Genes, Bacterial , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...