Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Exp Appl Acarol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869727

ABSTRACT

The aim of this study was to determine the level of infection of Ixodes ricinus ticks with pathogens (Borrelia spp., Rickettsia spp., and Anaplasma spp.) collected from Lacerta agilis and Zootoca vivipara lizards in the urban areas of Wroclaw (SW Poland). The study was carried out in July-August 2020. Lizards were caught by a noose attached to a pole or by bare hands, identified by species, and examined for the presence of ticks. Each lizard was then released at the site of capture. Ticks were removed with tweezers, identified by species using keys, and molecular tests were performed for the presence of pathogens. From 28 lizards (17 specimens of Z. vivipara and 11 specimens of L. agilis) a total of 445 ticks, including 321 larvae and 124 nymphs, identified as I. ricinus were collected. A larger number of ticks were obtained from L. agilis compared to Z. vivipara. Molecular tests for the presence of pathogens were performed on 445 specimens of I. ricinus. The nested PCR method for the fla gene allowed the detection of Borrelia spp. in 9.4% of ticks, and it was higher in ticks from L. agilis (12.0%) than from Z. vivipara (1.0%). The RFLP method showed the presence of three species, including two belonging to the B. burgdorferi s.l. complex (B. lusitaniae and B. afzelii), and B. miyamotoi. The overall level of infection of Rickettsia spp. was 19.3%, including 27.2% in ticks collected from Z. vivipara and 17.0% from L. agilis. Sequencing of randomly selected samples confirmed the presence of R. helvetica. DNA of Anaplasma spp. was detected only in one pool of larvae collected from L. agilis, and sample sequencing confirmed the presence of (A) phagocytophilum. The research results indicate the important role of lizards as hosts of ticks and their role in maintaining pathogens in the environment including urban agglomeration as evidenced by the first recorded presence of (B) miyamotoi and (A) phagocytophilum in I. ricinus ticks collected from L. agilis. However, confirmation of the role of sand lizards in maintaining (B) miyamotoi and A. phagocytophilum requires more studies and sampling of lizard tissue.

2.
Zoology (Jena) ; 164: 126160, 2024 May.
Article in English | MEDLINE | ID: mdl-38574691

ABSTRACT

Squamates exhibit evident diversity in their limb morphology. Gekkotans are a particularly diverse group in this respect. The appearance of toepads in gekkotans usually cooccurs with the reduction or loss of claws. The gecko Tarentola (Phyllodactylidae) shows a unique combination of features among geckos, with toepads, hyperphalangy, and dimorphism of claw expression (claws are retained on digits III and IV, but lost (manus) or strongly reduced (pes) on the remaining digits). Despite being a candidate model for studying embryonic skeletal development of the autopodium, no studies have investigated the autopodial development of the gecko Tarentola in detail. Here, we aim to follow up the development of the autopodial skeleton in T. annularis and T. mauritanica using acid-free double staining. The results indicate that the terminal phalanges of claw-bearing digits III and IV ossify earlier than in the remaining digits. This confirms the differential ossification as a result of claw regression in Tarentola. The strongly reduced second phalanges of digits IV in both the fore- and hindlimbs are the last ossifying phalanges. Such late ossification may precede the evolutionary loss of this phalanx. If this is correct, the autopodia of Tarentola would be an interesting example of both the hyperphalangy in digit I and the process of phalanx loss in digit IV. Delay in ossification of the miniaturised phalanx probably represents an example of paedomorphosis.


Subject(s)
Lizards , Animals , Lizards/anatomy & histology , Lizards/embryology , Extremities/anatomy & histology , Osteogenesis
3.
PeerJ ; 11: e16266, 2023.
Article in English | MEDLINE | ID: mdl-37868070

ABSTRACT

Background: Sexual dimorphism in size and shape is widespread among squamate reptiles. Sex differences in snake skull size and shape are often accompanied by intersexual feeding niche separation. However, allometric trajectories underlying these differences remain largely unstudied in several lineages. The sea krait Laticauda colubrina (Serpentes: Elapidae) exhibits very clear sexual dimorphism in body size, with previous studies having reported females to be larger and to have a relatively longer and wider head. The two sexes also differ in feeding habits: males tend to prey in shallow water on muraenid eels, whereas females prey in deeper water on congerid eels. Methods: I investigated sexual dimorphism in skull shape and size as well as the pattern of skull growth, to determine whether males and females follow the same ontogenetic trajectories. I studied skull characteristics and body length in 61 male and female sea kraits. Results: The sexes differ in skull shape. Males and females follow distinct allometric trajectories. Structures associated with feeding performance are female-biased, whereas rostral and orbital regions are male-biased. The two sexes differ in allometric trajectories of feeding-related structures (female biased) that correspond to dietary divergence between the sexes. Conclusions: Sea kraits exhibit clear sexual dimorphism in the skull form that may be explained by intersexual differences in the feeding habits as well as reproductive roles. The overall skull growth pattern resembles the typical pattern observed in other tetrapods.


Subject(s)
Colubrina , Hydrophiidae , Laticauda , Female , Male , Animals , Sex Characteristics , Elapidae , Skull/anatomy & histology , Water
4.
J Anat ; 243(4): 618-629, 2023 10.
Article in English | MEDLINE | ID: mdl-37013262

ABSTRACT

Gekkotans are one of the major clades of squamate reptiles. As one of the earliest-diverging lineages, they are crucial in studying deep-level squamate phylogeny and evolution. Developmental studies can shed light on the origin of many important morphological characters, yet our knowledge of cranial development in gekkotans is very incomplete. Here, we describe the embryonic development of the skull in a parthenogenetic gekkonid, the mourning gecko (Lepidodactylus lugubris), studied using non-acidic double staining and histological sectioning. Our analysis indicates that the pterygoid is the first ossifying bone in the skull, as in almost all other studied squamates, followed closely by the surangular and prearticular. The next to appear are the dentary, frontal, parietal and squamosal. The tooth-bearing upper jaw bones, the premaxilla and maxilla, develop relatively late. In contrast to previous reports, the premaxilla starts ossifying from two distinct centres, reminiscent of the condition observed in diplodactylids and eublepharids. Only a single ossification centre of the postorbitofrontal is observed. Some of the endochondral bones of the braincase (prootic, opisthotic, supraoccipital) and the dermal parasphenoid are the last bones to appear. The skull roof is relatively poorly ossified near the time of hatching, with a large frontoparietal fontanelle still present. Many bones begin ossifying relatively later in L. lugubris than in the phyllodactylid Tarentola annularis, which suggests that its ossification sequence is heterochronic with respect to T. annularis.


Subject(s)
Lizards , Animals , Lizards/anatomy & histology , Skull/anatomy & histology , Head , Embryonic Development , Grief
5.
Ecol Evol ; 12(1): e8527, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35127036

ABSTRACT

Under incomplete reproductive isolation, secondary contact of diverged allopatric lineages may lead to the formation of hybrid zones that allow to study recombinants over several generations as excellent systems of genomic interactions resulting from the evolutionary forces acting on certain genes and phenotypes. Hybrid phenotypes may either exhibit intermediacy or, alternatively, transgressive traits, which exceed the extremes of their parents due to epistasis and segregation of complementary alleles. While transgressive morphotypes have been examined in fish, reptiles, birds, and mammals, studies in amphibians are rare. Here, we associate microsatellite-based genotypes with morphometrics-based morphotypes of two tree frog species of the Hyla arborea group, sampled across a hybrid zone in Poland, to understand whether the genetically differentiated parental species also differ in morphology between each other and their hybrids and whether secondary contact leads to the evolution of intermediate or transgressive morphotypes. Using univariate approaches, explorative multivariate methods (principal component analyses) as well as techniques with prior grouping (discriminant function analyses), we find that morphotypes of both parental species and hybrids differ from each other. Importantly, hybrid morphotypes are neither intermediate nor transgressive but found to be more similar to H. orientalis than to H. arborea.

6.
Biology (Basel) ; 11(2)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35205047

ABSTRACT

Despite many decades of studies, our knowledge of skeletal development in birds is limited in many aspects. One of them is the development of the vertebral column. For many years it was widely believed that the column ossifies anteroposteriorly. However, later studies indicated that such a pattern is not universal in birds and in many groups the ossification starts in the thoracic rather than cervical region. Recent analyses suggest that two loci, located in the cervical and thoracic vertebrae, were ancestrally present in birds. However, the data on skeletal development are very scarce in the Neoaves, a clade that includes approximately 95% of extant species. We review the available information about the vertebral column development in birds and describe the ossification pattern in three neoavians, the domestic pigeon (Columba livia domestica), the great crested grebe (Podiceps cristatus) and the red-necked grebe (Podiceps grisegena). In P. cristatus, the vertebral column starts ossifying in the thoracic region. The second locus is present in the cervical vertebrae. In the pigeon, the cervical vertebrae ossify before the thoracics, but both the thoracic and cervical loci are present. Our ancestral state reconstructions confirm that both these loci were ancestrally present in birds, but the thoracic locus was later lost in psittacopasserans and at least some galloanserans.

7.
PeerJ ; 9: e11621, 2021.
Article in English | MEDLINE | ID: mdl-34178475

ABSTRACT

Despite the long history of embryological studies of squamates, many groups of this huge clade have received only limited attention. One such understudied group is the anguimorphs, a clade comprising morphologically and ecologically very diverse lizards. We describe several stages of embryonic development of Anguis fragilis, a limbless, viviparous anguimorph. Interestingly, in several clutches we observe high morphological variation in characters traditionally important in classifying embryos into developmental stages. The causes of this variation remain unknown but environmental factors do not seem to be very important. Additionally, we describe the state of ossification in several perinatal specimens of A. fragilis. The cranial skeleton is relatively poorly ossified around the time of birth, with all of the bones constituting the braincase unfused. On the other hand, the vertebral column is well ossified, with the neurocentral sutures closed and the neural arches fused in all postatlantal vertebrae. Such an advanced state of ossification may be related to the greater importance of the vertebral column in locomotion in limbless species than in ones with fully-developed limbs. Numerous factors seem to affect the state of ossification at the time of hatching or birth in squamates, including phylogenetic position, mode of reproduction and, potentially, limblessness. However, data from a greater number of species are needed to reach firmer conclusions about the relative importance of these variables in certain clades.

8.
PeerJ ; 9: e11311, 2021.
Article in English | MEDLINE | ID: mdl-33976986

ABSTRACT

BACKGROUND: Snakes exhibit sexual dimorphism in both head size and shape. Such differences are often attributed to different reproductive roles and feeding habits. We aim to investigate how sexual dimorphism is displayed in the highly specialised fish-egg-eating snake, Aipysurus eydouxii, by analysing two complementary features: body size and skull morphology. METHODS: We used data on body length, weight, and skull shape from 27 measurements of 116 males and females of A. eydouxii. We investigated both sexual dimorphism and allometric (multivariate and bi-variate) properties of skull growth in the analysed data set. RESULTS: We found that although there was female-biased sexual size dimorphism in body length, females were not heavier than males, contrary to what is commonly observed pattern among snakes. Moreover, females tend to possess relatively smaller heads than males. However, we only found very subtle differences in skull shape reflected in nasal width, mandibular fossa, quadrate crest and quadrate length. DISCUSSION: We suggest that the feeding specialisation in A. eydouxii does not allow for an increase in body thickness and the size of the head above a certain threshold. Our results may be interpreted as support for prey-size divergence as a factor driving skull dimorphism since such species in which the sexes do not differ in prey size also shows very subtle or no differences in skull morphology.

9.
J Anat ; 238(2): 349-364, 2021 02.
Article in English | MEDLINE | ID: mdl-32875600

ABSTRACT

Although the development of the avian skeleton has attracted considerable attention, most of the studies have been concentrated on the embryonic period, while studies on the postnatal period are rare. We studied the postnatal development of the skeleton in two phylogenetically distant birds, an altricial passerine Acrocephalus scirpaceus and a semiprecocial charadriiform Chroicocephalus ridibundus. The neonates of the former, despite being altricial, have well-ossified skeleton-the degree of development approaches that of the semiprecocial gull. However, after hatching the limb bones (particularly those of the hind limb) ossify earlier in the gull which is probably related to faster acquisition of locomotor abilities. We have observed that, in contrast to previous reports from neognathous birds, in the ankle of the gull, the ascending process fuses with the astragalus rather than with the calcaneum. This type of development is present in palaeognaths and nonavian dinosaurs but has not yet been reported in neognaths. This indicates a greater diversity within Neognathae and suggests a more complex scenario for the evolution of the avian ankle. However, data from a greater number of species are needed to establish the developmental sequence ancestral for neognathous birds. Furthermore, the sequence of bone fusions in the wrist of Acrocephalus is similar to the fossil-documented evolutionary sequence observed in the phylogeny of early birds, with the semilunate carpal and major metacarpal fusing first, followed by the alular metacarpal fusing with the major metacarpal and then the major and minor metacarpal fusing proximally. These data underscore the importance of developmental studies for reconstructing the evolutionary history.


Subject(s)
Biological Evolution , Charadriiformes/growth & development , Osteogenesis , Skeleton/growth & development , Songbirds/growth & development , Animals
10.
PeerJ ; 7: e6525, 2019.
Article in English | MEDLINE | ID: mdl-30809465

ABSTRACT

Johann Ludwig Christian Gravenhorst's herpetological collection at the Museum of Natural History, University of Wroclaw included numerous important specimens of amphibians and reptiles. The majority, if not the entirety, of this collection has long been thought to be lost. However, we were able to rediscover some type specimens of lizards. The rediscovered specimens include the holotypes of Liolaemus conspersus and L. hieroglyphicus, one syntype of Callopistes maculatus (here designated as the lectotype) and two syntypes of L. lineatus (one of which is herein designated as the lectotype). Reexamination of these specimens indicates that previous synonymies proposed for L. conspersus and two syntypes of L. hieroglyphicus are problematic; furthermore, more complex taxonomic work is needed to resolve this issue. Two rediscovered syntypes of L. lineatus differ in several scalation traits and are possibly not conspecific. The type specimens of several other species of lizards from Gravenhorst's collection (Liolaemus marmoratus, L. unicolor and two other syntypes of L. lineatus, Leiocephalus schreibersii and Chalcides viridanus) were not found and are probably lost.

11.
PeerJ ; 5: e3262, 2017.
Article in English | MEDLINE | ID: mdl-28462054

ABSTRACT

BACKGROUND: Lepidosaurs, a group including rhynchocephalians and squamates, are one of the major clades of extant vertebrates. Although there has been extensive phylogenetic work on this clade, its interrelationships are a matter of debate. Morphological and molecular data suggest very different relationships within squamates. Despite this, relatively few studies have assessed the utility of other types of data for inferring squamate phylogeny. METHODS: We used developmental sequences of 20 events in 29 species of lepidosaurs. These sequences were analysed using event-pairing and continuous analysis. They were transformed into cladistic characters and analysed in TNT. Ancestral state reconstructions were performed on two main phylogenetic hypotheses of squamates (morphological and molecular). RESULTS: Cladistic analyses conducted using characters generated by these methods do not resemble any previously published phylogeny. Ancestral state reconstructions are equally consistent with both morphological and molecular hypotheses of squamate phylogeny. Only several inferred heterochronic events are common to all methods and phylogenies. DISCUSSION: Results of the cladistic analyses, and the fact that reconstructions of heterochronic events show more similarities between certain methods rather than phylogenetic hypotheses, suggest that phylogenetic signal is at best weak in the studied developmental events. Possibly the developmental sequences analysed here evolve too quickly to recover deep divergences within Squamata.

12.
Zookeys ; (320): 97-101, 2013.
Article in English | MEDLINE | ID: mdl-23950685

ABSTRACT

The presumed lost holotype of Liolaemus lemniscatus Gravenhorst, 1838 has been found at the Museum of Natural History of the University of Wroclaw and identified by the individual pattern of head scales which matches Gravenhorst's drawing. The first detailed description of this specimen is provided.

SELECTION OF CITATIONS
SEARCH DETAIL
...