Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 103(7): 3322-3333, 2023 May.
Article in English | MEDLINE | ID: mdl-36750451

ABSTRACT

BACKGROUND: Chia oil (CO) is popular for being the richest vegetable source of α-linolenic acid (60-66%). However, this content of polyunsaturated fatty acids (PUFA) limits the incorporation of bulk CO in food products due to its high probability of oxidation. This justifies the study of alternative wall materials for microencapsulation. No reports regarding the use of dairy protein/vegetable protein/polysaccharide blends as wall material for the microencapsulation of CO have been published. Therefore, this work analyzed the behavior of a whey protein concentrate (WPC)/soy protein isolate (SPI)/arabic gum (AG) blend as wall material. The complex coacervation (CC) process was studied: pH, 4.0; total solid content, 30% w/v; WPC/SPI/AG ratio, 8:1:1 w/w/w; stirring speed, 600 rpm; time, 30 min; room temperature. RESULTS: The oxidative stability index (OSI) of CO (3.25 ± 0.16 h) was significantly increased after microencapsulation (around four times higher). Furthermore, the well-known matrix-forming ability of AG and WPC helped increase the OSI of microencapsulated oils. Meanwhile, SPI contributed to the increase of the encapsulation efficiency due to its high viscosity. Enhanced properties were observed with CC: encapsulation efficiency (up to 79.88%), OSIs (from 11.25 to 12.52 h) and thermal stability of microcapsules given by the denaturation peak temperatures of WPC (from 77.12 to 86.00 °C). No significant differences were observed in the fatty acid composition of bulk and microencapsulated oils. CONCLUSION: Microcapsules developed from complex coacervates based on the ternary blend represent promising omega-3-rich carriers for being incorporated into functional foods.


Subject(s)
Fatty Acids, Omega-3 , Soybean Proteins , Whey Proteins/chemistry , Soybean Proteins/metabolism , Capsules/chemistry , Fatty Acids, Omega-3/chemistry , Freeze Drying , Oxidative Stress , Gum Arabic/chemistry , Drug Compounding
2.
J Food Sci ; 84(5): 1035-1044, 2019 May.
Article in English | MEDLINE | ID: mdl-30990893

ABSTRACT

Chia seed (Salvia hispanica L.) oil is mainly composed of ω-3 fatty acids (61% to 70%). Despite being nutritionally favorable, higher amounts of polyunsaturated fatty acids result in poorer oxidative stability. Thus, the aim of this work was to produce edible vegetable oil blends rich in ω-3 fatty acids and with greater oxidative stability than pure chia oil. Blending of chia with other specialty oils (walnut, almond, virgin, and roasted sesame oils) was assessed in the following respective proportions: 20:80, 30:70, and 40:60 (v/v). An accelerated storage test was conducted (40 ± 1 °C, 12 days). Primary and secondary oxidation products, free fatty acid content, antioxidant compounds, fatty acid composition, and induction time were determined. The blends presented higher oxidative stability indices than chia oil. Sensory analysis showed that, given a pure oil, judges did not identify statistically significant differences among the blends. The results suggest that blending of chia oil is an adequate alternative to obtain ω-3-enriched oils with higher oxidative stability indices. PRACTICAL APPLICATION: Vegetable oil blending is a widely used practice in the edible oil industry to produce blended oils with enhanced stability and nutritional and sensory properties at affordable prices. The blends developed in this study from chia, sesame, walnut, and almond oils take advantage of the properties of each parent oil to yield products with improved oxidative stability, essential fatty acid presence, and sensory characteristics. To achieve a daily intake of 2.22 g/day of ω-3 fatty acids as recommended by the Intl. Society for the Study of Fatty Acids and Lipids (ISSFAL), it is necessary to consume approximately one spoonful of the formulated mixtures.


Subject(s)
Antioxidants , Fatty Acids, Omega-3 , Plant Oils/chemistry , Salvia/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Fatty Acids/analysis , Fatty Acids/chemistry , Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-3/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...