Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38255616

ABSTRACT

In contemporary engineering practices, the utilization of sustainable materials and eco-friendly techniques has gained significant importance. Wooden joints, particularly those created with polyurethan-based bio-adhesives, have garnered significant attention owing to their intrinsic environmental advantages and desirable mechanical properties. In comparison to conventional joining methods, adhesive joints offer distinct benefits such as an enhanced load distribution, reduced stress concentration, and improved aesthetic appeal. In this study, reference and toughened single-lap joint samples were investigated experimentally and numerically under quasi-static loading conditions. The proposed research methodology involves the infusion of a bio-adhesive into the wooden substrate, reinforcing the matrix of its surfaces. This innovative approach was developed to explore a synergetic effect of both wood and bio-adhesive. The experimentally validated results showcase a significant enhancement in joint strength, demonstrating an 85% increase when compared to joints with regular pine substrates. Moreover, the increased delamination thickness observed in toughened joints was found to increase the energy absorption of the joint.

2.
Materials (Basel) ; 16(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38005076

ABSTRACT

This study investigates a sustainable alternative for composites and adhesives in high-performance industries like civil and automotive. This study pioneers the development and application of a new methodology to characterize a bio-based, zero-thickness adhesive. This method facilitates precise measurements of the adhesive's strength and fracture properties under zero-thickness conditions. The research also encompasses the characterization of densified pine wood, an innovative wood product distinguished by enhanced mechanical properties, which is subsequently compared to natural pine wood. We conducted a comprehensive characterization of wood's strength properties, utilizing dogbone-shaped samples in the fiber direction, and block specimens in the transverse direction. Butt joints were employed for adhesive testing. Mode I fracture properties were determined via compact tension (CT) and double cantilever beam (DCB) tests for wood and adhesive, respectively, while mode II response was assessed through end-loaded split (ELS) tests. The densification procedure, encompassing chemical and mechanical processes, was a focal point of the study. Initially, wood was subjected to acid boiling to remove the wood matrix, followed by the application of pressure to enhance density. As a result, wood density increased by approximately 100 percent, accompanied by substantial improvements in strength and fracture energy along the fiber direction by about 120 percent. However, it is worth noting that due to the delignification nature of the densification method, properties in the transverse direction, mainly reliant on the lignin matrix, exhibited compromises. Also introduced was an innovative technique to evaluate the bio-based adhesive, applied as a zero-thickness layer. The results from this method reveal promising mechanical properties, highlighting the bio-based adhesive's potential as an eco-friendly substitute for synthetic adhesives in the wood industry.

3.
Materials (Basel) ; 16(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37512248

ABSTRACT

This paper presents an experimental study about the use of innovative bio-based pultruded carbon-fiber-reinforced polymer (CFRP) laminates for structural strengthening. The bio-based laminates were produced in the framework of an applied research project (BioLam) using a resin system with 50% (wt.%) bio-based content, obtained from renewable resources. In the first part of the study, their tensile and interlaminar shear properties were characterized and compared with those of conventional oil-based CFRP laminates. In the second part of the study, the bond behavior to concrete of both types of CFRP laminates applied according to the externally bonded reinforcement (EBR) technique was assessed by means of single-lap shear tests performed on CFRP-strengthened concrete blocks; the experimental results obtained from these tests were then used in a numerical procedure to calibrate local bond vs. slip laws for both types of laminates. The final part of this study comprised four-point bending tests on full-scale EBR-CFRP-strengthened reinforced concrete (RC) beams to assess the structural efficacy of the bio-based laminates; these were benchmarked with tests performed on similar RC beams strengthened with conventional CFRP laminates. The results obtained in this study show that the (i) material properties, (ii) the bond behavior to concrete, and (iii) the structural efficacy of the developed bio-based CFRP laminates are comparable to those of their conventional counterparts, confirming their potential to be used in the strengthening of RC structures.

4.
Polymers (Basel) ; 15(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36679282

ABSTRACT

We report on the stabilization of an oil-in-water (O/W) emulsion to, combined with interfacial polymerization, produce core-shell polyurea microcapsules (MCs) containing isophorone diisocyanate (IPDI). These will act as crosslinkers for mono-component adhesives. The emulsion stabilization was evaluated using three types of stabilizers, a polysaccharide (gum arabic) emulsifier, a silicone surfactant (Dabco®DC193), a rheology modifier (polyvinyl alcohol), and their combinations. Emulsion sedimentation studies, optical microscopy observation, and scanning electron microscopy enabled us to assess the emulsions stability and droplet size distribution and correlate them to the MCs morphology. Fourier transform infrared spectroscopy and thermogravimetric analysis revealed the MCs composition and enabled us to evaluate the encapsulation yield. All stabilizers, except DC193, led to spherical, loose, and core-shelled MCs. The rheology modifier, which increases the continuous phase viscosity, reduces the emulsion droplets sedimentation, keeping their size constant during the MCs' synthesis. This allowed us to obtain good quality MCs, with a smaller average diameter, of approximately 40.9 µm mode, a narrower size distribution and 46 wt% of encapsulated IPDI. We show the importance of the emulsion stability to tune the MCs morphology, size, and size distribution, which are critical for improved homogeneity and performance when used, e.g., in natural and synthetic adhesive formulations industry.

5.
Polymers (Basel) ; 16(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38201776

ABSTRACT

We employed microemulsion combined with the solvent evaporation technique to produce biodegradable polycaprolactone (PCL) MCs, containing encapsulated isophorone diisocyanate (IPDI), to act as crosslinkers in high-performance adhesive formulations. The MC production process was optimized by applying a design of experiment (DoE) statistical approach, aimed at decreasing the MCs' average size. For that, three different factors were considered, namely the concentration of two emulsifiers, polyvinyl alcohol (PVA) and gum arabic (GA); and the oil-to-water phase ratio of the emulsion. The significance of each factor was evaluated, and a predictive model was developed. We were able to decrease the average MC size from 326 µm to 70 µm, maintaining a high encapsulation yield of approximately 60% of the MCs' weight, and a very satisfactory shelf life. The MCs' average size optimization enabled us to obtain an improved distributive and dispersive mixture of isocyanate-loaded MCs at the adhesive bond. The MCs' suitability as crosslinkers for footwear adhesives was assessed following industry standards. Peel tests revealed peel strength values above the minimum required for casual footwear, while the creep test results indicated an effective crosslinking of the adhesive. These results confirm the ability of the MCs to release IPDI during the adhesion process and act as crosslinkers for new adhesive formulations.

6.
Toxics ; 10(7)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35878249

ABSTRACT

The establishment of self-disinfecting surfaces is an important method to avoid surface contamination. Recently, paints with antimicrobial properties have been developed to be applied on different surfaces, avoiding contamination with pathogens. In this work, self-disinfecting paints containing Chloroxylenol (CLX), Terpineol (TRP), and a mixture of both substances were developed. The goal was to evaluate and validate these paints using international standards for eventual commercialization and application in scenarios where surface contamination represents a problem. The paints were challenged with five different bacteria, Gram-positive and Gram-negative, before and after a scrub resistance test, where the long-term efficacy of the paints was evaluated. The antibacterial activity assessment was performed following ISO 22196 and JIS Z2801. In general, the paints showed very promising results, demonstrating their antibacterial activity, before and after scrub resistance test. The paint incorporating the mixture of CLX and TRP (CLX+TRP) stood out by revealing consistent results of antibacterial activity both before and after the scrub resistance test for most of the tested bacteria. The cytotoxicity of the developed paints was assessed in vitro by performing tests by direct contact with a human skin cell line, HaCaT, and testes on extracts with HaCaT and a pulmonary cell line, A549. The methodologies for cytotoxicity assessment were developed based in ISO 10993. For genotoxicity assessment, alkaline comet assay was conducted on both cell lines. The cytotoxicity assessment revealed promising results with the paints, demonstrating values of cellular viability above 70% and values of lactate dehydrogenase (LDH) leakage below 30%. The genotoxic assessment also revealed acceptable values of primary DNA damage for the developed antibacterial paints. In general, the selected methodologies presented good potential to be applied in the validation of both efficacy and safety of the antimicrobial paints, aiming to be applied in real scenarios.

7.
Molecules ; 27(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35011536

ABSTRACT

Liquefaction of biomass delivers a liquid bio-oil with relevant chemical and energetic applications. In this study we coupled it with short rotation coppice (SRC) intensively managed poplar cultivations aimed at biomass production while safeguarding environmental principles of soil quality and biodiversity. We carried out acid-catalyzed liquefaction, at 160 °C and atmospheric pressure, with eight poplar clones from SRC cultivations. The bio-oil yields were high, ranging between 70.7 and 81.5%. Average gains of bio-oil, by comparison of raw biomasses, in elementary carbon and hydrogen and high heating, were 25.6, 67, and 74%, respectively. Loss of oxygen and O/C ratios averaged 38 and 51%, respectively. Amounts of elementary carbon, oxygen, and hydrogen in bio-oil were 65, 26, and 8.7%, and HHV averaged 30.5 MJkg-1. Correlation analysis showed the interrelation between elementary carbon with HHV in bio-oil or with oxygen loss. Overall, from 55 correlations, 21 significant and high correlations among a set of 11 variables were found. Among the most relevant ones, the percentage of elementary carbon presented five significant correlations with the percentage of O (-0.980), percentage of C gain (0.902), percentage of O loss (0.973), HHV gain (0.917), and O/C loss (0.943). The amount of carbon is directly correlated with the amount of oxygen, conversely, the decrease in oxygen content increases the elementary carbon and hydrogen concentration, which leads to an improvement in HHV. HHV gain showed a strong positive dependence on the percentage of C (0.917) and percentage of C gain (0.943), while the elementary oxygen (-0.885) and its percentage of O loss (0.978) adversely affect the HHV gain. Consequently, the O/C loss (0.970) increases the HHV positively. van Krevelen's analysis indicated that bio-oils are chemically compatible with liquid fossil fuels. FTIR-ATR evidenced the presence of derivatives of depolymerization of lignin and cellulose in raw biomasses in bio-oil. TGA/DTG confirmed the bio-oil burning aptitude by the high average 53% mass loss of volatiles associated with lowered peaking decomposition temperatures by 100 °C than raw biomasses. Overall, this research shows the potential of bio-oil from liquefaction of SRC biomasses for the contribution of renewable energy and chemical deliverables, and thereby, to a greener global economy.


Subject(s)
Acids/chemistry , Biomass , Cloning, Organism , Populus , Catalysis , Cellulose , Cloning, Organism/methods , Lignin , Populus/genetics , Populus/metabolism
8.
Polymers (Basel) ; 15(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36616356

ABSTRACT

The circular economy plays an important role in the preparation and recycling of polymers. Research groups in different fields, such as materials science, pharmaceutical and engineering, have focused on building sustainable polymers to minimize the release of toxic products. Recent studies focused on the circular economy have suggested developing new polymeric materials based on renewable and sustainable sources, such as using biomass waste to obtain raw materials to prepare new functional bio-additives. This review presents some of the main characteristics of common polymer additives, such as antioxidants, antistatic agents and plasticizers, and recent research in developing bio-alternatives. Examples of these alternatives include the use of polysaccharides from agro-industrial waste streams that can be used as antioxidants, and chitosan which can be used as an antistatic agent.

9.
Polymers (Basel) ; 13(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34883590

ABSTRACT

There is a strong need to develop and implement appropriate alternatives to replace formaldehyde-based adhesive systems, such as phenol-formaldehyde, in the industry of wood-based panels (WBPs). This is due to the toxicity and volatility of formaldehyde and restrictions on its use associated with some formaldehyde-based adhesives. Additionally, the current pressure to reduce the dependence on polymeric materials, including adhesives, from petrochemical-based sources has led to increased interest in bio-based adhesives, which, in some cases, already provide acceptable properties to the end-product. Among the potential raw materials for good-quality, renewable-based adhesive formulations, this paper highlights tannins, lignin, and protein sources. However, regarding renewable sources, specific features must be considered, such as their lower reactivity than certain petrochemical-based sources and, therefore, higher production costs, resource availability issues, and the need for toxicological investigations on alternative systems, to compare them to conventional systems. As a result, further research is highly encouraged to develop viable formaldehyde-free adhesive systems based on renewable sources, either at the technical or economical level. Moreover, herein, we also showcase the present market of WBPs, highlighting the obstacles that the alternative and new bio-based adhesives must overcome.

10.
Molecules ; 26(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34885736

ABSTRACT

Biomass thermochemical liquefaction is a chemical process with multifunctional bio-oil as its main product. Under this process, the complex structure of lignocellulosic components can be hydrolysed into smaller molecules at atmospheric pressure. This work demonstrates that the liquefaction of burned pinewood from forest fires delivers similar conversion rates into bio-oil as non-burned wood does. The bio-oils from four burned biomass fractions (heartwood, sapwood, branches, and bark) showed lower moisture content and higher HHV (ranging between 32.96 and 35.85 MJ/kg) than the initial biomasses. The increased HHV resulted from the loss of oxygen, whereas the carbon and hydrogen mass fractions increased. The highest conversion of bark and heartwood was achieved after 60 min of liquefaction. Sapwood, pinewood, and branches reached a slightly higher conversion, with yields about 8% greater, but with longer liquefaction time resulting in higher energy consumption. Additionally, the van Krevelen diagram indicated that the produced bio-oils were closer and chemically more compatible (in terms of hydrogen and oxygen content) to the hydrocarbon fuels than the initial biomass counterparts. In addition, bio-oil from burned pinewood was shown to be a viable alternative biofuel for heavy industrial applications. Overall, biomass from forest fires can be used for the liquefaction process without compromising its efficiency and performance. By doing so, it recovers part of the lost value caused by wildfires, mitigating their negative effects.


Subject(s)
Biomass , Lignin/chemistry , Plant Oils/chemistry , Polyphenols/chemistry , Wildfires , Hydrogen/chemistry , Hydrolysis , Oxygen/chemistry , Peptide Hydrolases/chemistry , Pinus/chemistry , Temperature , Water , Wood/chemistry
11.
Antibiotics (Basel) ; 10(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34827290

ABSTRACT

The risk of infection arising from indirect sources-namely, contaminated surfaces-has been proved, particularly in healthcare facilities. In the attempt to minimize this problem, innumerable research projects involving the development of surfaces with self-disinfecting properties are being conducted. In this work, wall-paints with self-disinfecting properties were developed with the scope of being applied in environments prone to contamination, such as those at healthcare settings. Our approach was to develop new paint formulations containing two natural plant-based products with known antimicrobial activity-colophony (CLF) and curcumin (CUR). The natural substances were separately incorporated on a commercial paint and their antibacterial activity was evaluated with several bacterial species following ISO 22196. To assess the paints' safety, cytotoxicity tests were performed on HaCaT and A549 cell lines, using tests on extracts and direct contact tests, as suggested by the standardized protocol ISO 10993. In general, both paints containing CLF and CUR were able to reduce the bacterial growth after 24 h, compared with the control, the commercial unmodified paint. Colophony was even able to reduce the number of culturable bacteria by over 2 log for Staphylococcus aureus, Escherichia coli, and Bacillus cereus. Regarding the cytotoxicity tests performed (WST-1, NRU, and LDH), both formulations revealed promising results regardless of the methodology used.

12.
ACS Omega ; 6(30): 19343-19355, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34368521

ABSTRACT

Plastic pollution is a persistent challenge worldwide with the first reports evidencing its impact on the living and nonliving components of the environment dating back more than half a century. The rising concerns regarding the immediate and long-term consequences of plastic matter entrainment into foods and water cannot be overemphasized in light of our pursuit of sustainability (in terms of food, water, environment, and our health). Hence, some schools of thought recommend the revisitation and continuous assessment of the plastic economy, while some call for the outright ban of plastic materials, demonstrating that plastic pollution requires, more than ever, renewed, innovative, and effective approaches for a holistic solution. In this paper, dozens of reports on various aspects of plastic pollution assessment are collated and reviewed, and the impact of plastic pollution on both the living and nonliving components of the environment is discussed. Current challenges and factors hindering efforts to mitigate plastic pollution are identified to inform the presented recommendations while underscoring, for policymakers, stakeholders, and the scientific community, the exigency of finding sustainable solutions to plastic pollution that not only encompass existing challenges but also future threats presented by plastic pollution.

13.
Polymers (Basel) ; 13(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34279341

ABSTRACT

Environmental surface contamination with microorganisms is a serious concern worldwide. Triclosan and isoborneol present good antimicrobial activity. Their immobilisation to paint substrates allows for development of a material that stays effective over a longer time. In this work, we disclosed the preliminary studies to evaluate the antimicrobial activity of the active molecule after being functionalised with isocyanates for further immobilisation on the paint substrate. Overall, the newly developed non-release antimicrobial coating provides an effective way of preventing the spread of diseases and has been proven to inhibit bacterial growth and with a considerable antimicrobial activity towards S. aureus, E. coli, and K. variicola at the tested concentrations.

14.
Environ Res ; 198: 111219, 2021 07.
Article in English | MEDLINE | ID: mdl-33965385

ABSTRACT

The control of marine biofouling has raised serious environmental concerns, thus the continuous release of toxic and persistent biocidal agents applied as anti-biofouling coatings have triggered the search for non-toxic strategies. However, most of them still lack rigorous evaluation of their ecotoxicity and antifouling effects under real scenarios and their correlation with simulated assays. In this work, the biocide releasing risk and ecotoxicity of a biocidal and foul-release polydimethylsiloxane (PDMS)-based marine coating containing grafted Econea biocide (<0.6 wt.%) were evaluated under simulated real mechanical wear conditions at a pilot-scale system, and under extreme wear scenarios (washability settings). The coating system demonstrated low environmental impact against the model Vibrio fischeri bacterium and marine algae, associated with the effective biocide grafting in the coating matrix and subsequent biocide release minimization. This multifunctional coating system also showed auspicious antifouling (AF) effects, with an AF performance index significantly higher (API > 89) than a single foul-release system (AF < 40) after two and half years at a real immersion scenario in the Portuguese shore of the Atlantic Ocean. These field results corroborated the antibiofilm performance evaluated with Pseudoalteromonas tunicata at simulated dynamic marine conditions after seven-week assays. This eco-friendly multifunctional strategy, validated by both simulated testing conditions and real field tests, is believed to be a powerful tool for the development of AF technologies and a potential contribution to the quest for new environmentally friendly antifouling solutions.


Subject(s)
Biofouling , Disinfectants , Biofouling/prevention & control , Disinfectants/toxicity , Pseudoalteromonas
15.
Pharmaceutics ; 10(4)2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30551686

ABSTRACT

Onychomycosis affects about 15% of the population. This disease causes physical and psychosocial discomfort to infected patients. Topical treatment (creams, solutions, gels, colloidal carriers, and nail lacquers) is usually the most commonly required due to the high toxicity of oral drugs. Currently, the most common topical formulations (creams and lotions) present a low drug delivery to the nail infection. Nail lacquers appear to increase drug delivery and simultaneously improve the effectiveness of treatment with increased patient compliance. These formulations leave a polymer film on the nail plate after solvent evaporation. The duration of the film residence in the nail constitutes an important property of nail lacquer formulation. In this study, a polyurethane polymer was used to delivery antifungals drugs, such as terbinafine hydrochloride (TH) and ciclopirox olamine (CPX) and the influence of its concentration on the properties of nail lacquer formulations was assessed. The nail lacquer containing the lowest polymer concentration (10%) was the most effective regarding the in vitro release, permeation, and antifungal activity. It has also been demonstrated that the application of PU-based nail lacquer improves the nail plate, making it smooth and uniform and reduces the porosity contributing to the greater effectiveness of these vehicles. To conclude, the use of polyurethane in nail formulations is promising for nail therapeutics.

16.
Polymers (Basel) ; 10(8)2018 Jul 26.
Article in English | MEDLINE | ID: mdl-30960750

ABSTRACT

Polyurea/polyurethane (PUa/PU) shell microcapsules (MCs), containing high loadings of isophorone diisocyanate (IPDI) in the core, were developed to enable the production of mono-component, eco-friendly and safer adhesive formulations for the footwear industry. IPDI microencapsulation was obtained via oil⁻in⁻water (O/W) microemulsion combined with interfacial polymerization. A methylene diphenyl diisocyanate (MDI) compound (a commercial blend of monomeric and polymeric species), with higher reactivity than IPDI and low viscosity, was added to the O phase to competitively contribute to the shell formation, improving its quality. Four different active H sources were tested, aimed at achieving a high encapsulation yield. The successful encapsulation of IPDI was confirmed by Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), while the MCs' morphology and size distribution were assessed by scanning electron microscopy (SEM). The incorporation of a multifunctional isocyanate silane in the O phase, as "latent" active H source, led to the formation of impermeable PUa/PU-silica hybrid shell MCs with more than 60 wt.% of pure encapsulated IPDI. A proof-of-concept study shows high peeling strength and a structural type of failure of the adhesive joint, revealing an effective IPDI release. These new engineered MCs are found to be promising crosslinkers for mono-component adhesives for high demanding applications.

17.
Polymers (Basel) ; 10(10)2018 Oct 20.
Article in English | MEDLINE | ID: mdl-30961095

ABSTRACT

The synthesis of four samples of new polyurethanes was evaluated by changing the ratio of the diol monomers used, poly(propylene glycol) (PPG) and D-isosorbide, in the presence of aliphatic isocyanates such as the isophorone diisocyanate (IPDI) and 4,4'-methylenebis(cyclohexyl isocyanate) (HMDI). The thermal properties of the four polymers obtained were determined by DSC, exhibiting Tg values in the range 55⁻70 °C, and their molecular structure characterized by FTIR, ¹H, and 13C NMR spectroscopies. The diffusion coefficients of these polymers in solution were measured by the Pulse Gradient Spin Echo (PGSE) NMR method, enabling the calculation of the corresponding hydrodynamic radii in diluted solution (1.62⁻2.65 nm). The molecular weights were determined by GPC/SEC and compared with the values determined by a quantitative 13C NMR analysis. Finally, the biocompatibility of the polyurethanes was assessed using the HaCaT keratinocyte cell line by the MTT reduction assay method showing values superior to 70% cell viability.

18.
J Pharm Sci ; 106(6): 1570-1577, 2017 06.
Article in English | MEDLINE | ID: mdl-28263845

ABSTRACT

Onychomycosis is a fungal nail infection. The development of new topical antifungal agents for the treatment of onychomycosis has focused on formulation enhancements that optimize the pharmacological characteristics required for its effective treatment. Polyurethanes (PUs) have never been used in therapeutic nail lacquers. The aim of this work has been the development of new PU-based nail lacquers with antifungal activity containing 1.0% (wt/wt) of terbinafine hydrochloride. The biocompatibility, wettability, and the prediction of the free volume in the polymeric matrix were assessed using a human keratinocytes cell line, contact angle, and Positron Annihilation Lifetime Spectroscopy determinations, respectively. The morphology of the films obtained was confirmed by scanning electron microscopy, while the nail lacquers' bioadhesion to nails was determined by mechanical tests. Viscosity, in vitro release profiles, and antifungal activity were also assessed. This study demonstrated that PU-terbinafine-based nail lacquers have good keratinocyte compatibility, good wettability properties, and adequate free volume. They formed a homogenous film after application, with suitable adhesion to the nail plate. Furthermore, the antifungal test results demonstrated that the terbinafine released from the nail lacquer Formulation A PU 19 showed activity against dermatophytes, namely Trichophyton rubrum.


Subject(s)
Antifungal Agents/administration & dosage , Drug Delivery Systems/methods , Lacquer/analysis , Nails/microbiology , Naphthalenes/administration & dosage , Polyurethanes/analysis , Adhesives/chemistry , Antifungal Agents/pharmacology , Cell Line , Fungi/drug effects , Humans , Naphthalenes/pharmacology , Onychomycosis/drug therapy , Terbinafine , Wettability
19.
Data Brief ; 8: 308-11, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27331107

ABSTRACT

Herein, the integrated raw data regarding the (1)H-NMR, experiments of Aesculetin, 4-Methylumbelliferone, and umbelliferone, in Acetone-d(6) at 25 °C, are presented for further analysis and comparison purposes, for whom may be interested.

20.
Data Brief ; 7: 1455-7, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27182538

ABSTRACT

Herein, the data acquired regarding the preliminary and exploratory experiments conducted with potato peel as a biomass source for the direct thermochemical liquefaction is disclosed. The procedure was carried out in a 2-ethylhexanol/DEG solvent mixture at 160 °C in the presence of p-Toluenesulfonic acid. The adopted procedure afforded a bio-oil in high yield (up to 93%) after only 30 min. For longer reaction times, higher amounts of solid residues were obtained leading, consequently, to lower yields.

SELECTION OF CITATIONS
SEARCH DETAIL
...