Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nature ; 629(8011): 443-449, 2024 May.
Article in English | MEDLINE | ID: mdl-38658754

ABSTRACT

The Werner syndrome RecQ helicase WRN was identified as a synthetic lethal target in cancer cells with microsatellite instability (MSI) by several genetic screens1-6. Despite advances in treatment with immune checkpoint inhibitors7-10, there is an unmet need in the treatment of MSI cancers11-14. Here we report the structural, biochemical, cellular and pharmacological characterization of the clinical-stage WRN helicase inhibitor HRO761, which was identified through an innovative hit-finding and lead-optimization strategy. HRO761 is a potent, selective, allosteric WRN inhibitor that binds at the interface of the D1 and D2 helicase domains, locking WRN in an inactive conformation. Pharmacological inhibition by HRO761 recapitulated the phenotype observed by WRN genetic suppression, leading to DNA damage and inhibition of tumour cell growth selectively in MSI cells in a p53-independent manner. Moreover, HRO761 led to WRN degradation in MSI cells but not in microsatellite-stable cells. Oral treatment with HRO761 resulted in dose-dependent in vivo DNA damage induction and tumour growth inhibition in MSI cell- and patient-derived xenograft models. These findings represent preclinical pharmacological validation of WRN as a therapeutic target in MSI cancers. A clinical trial with HRO761 (NCT05838768) is ongoing to assess the safety, tolerability and preliminary anti-tumour activity in patients with MSI colorectal cancer and other MSI solid tumours.


Subject(s)
Antineoplastic Agents , Drug Discovery , Enzyme Inhibitors , Microsatellite Instability , Neoplasms , Synthetic Lethal Mutations , Werner Syndrome Helicase , Animals , Female , Humans , Mice , Administration, Oral , Allosteric Regulation/drug effects , Antineoplastic Agents/adverse effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Clinical Trials as Topic , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , DNA Damage/drug effects , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Mice, Nude , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Protein Domains , Reproducibility of Results , Suppression, Genetic , Synthetic Lethal Mutations/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Werner Syndrome Helicase/antagonists & inhibitors , Werner Syndrome Helicase/genetics , Werner Syndrome Helicase/metabolism , Xenograft Model Antitumor Assays
2.
ChemMedChem ; 18(11): e202300051, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36988034

ABSTRACT

The inhibition of the YAP-TEAD protein-protein interaction constitutes a promising therapeutic approach for the treatment of cancers linked to the dysregulation of the Hippo signaling pathway. The identification of a class of small molecules which potently inhibit the YAP-TEAD interaction by binding tightly to the Ω-loop pocket of TEAD has previously been communicated. This report details the further multi-parameter optimization of this class of compounds resulting in advanced analogs combining nanomolar cellular potency with a balanced ADME and off-target profile, and efficacy of these compounds in tumor bearing mice is demonstrated for the first time.


Subject(s)
Neoplasms , Transcription Factors , Animals , Mice , Transcription Factors/metabolism , YAP-Signaling Proteins
3.
ChemMedChem ; 17(19): e202200303, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35950546

ABSTRACT

Inhibition of the YAP-TEAD protein-protein interaction is an attractive therapeutic concept under intense investigation with the objective to treat cancers associated with a dysregulation of the Hippo pathway. However, owing to the very extended surface of interaction of the two proteins, the identification of small drug-like molecules able to efficiently prevent YAP from binding to TEAD by direct competition has been elusive so far. We disclose here the discovery of the first class of small molecules potently inhibiting the YAP-TEAD interaction by binding at one of the main interaction sites of YAP at the surface of TEAD. These inhibitors, providing a path forward to pharmacological intervention in the Hippo pathway, evolved from a weakly active virtual screening hit advanced to high potency by structure-based design.


Subject(s)
Neoplasms , Transcription Factors , Adaptor Proteins, Signal Transducing/chemistry , Humans , Transcription Factors/metabolism , YAP-Signaling Proteins
4.
Cancer Discov ; 2(12): 1118-33, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23002168

ABSTRACT

UNLABELLED: Patient stratification biomarkers that enable the translation of cancer genetic knowledge into clinical use are essential for the successful and rapid development of emerging targeted anticancer therapeutics. Here, we describe the identification of patient stratification biomarkers for NVP-BGJ398, a novel and selective fibroblast growth factor receptor (FGFR) inhibitor. By intersecting genome-wide gene expression and genomic alteration data with cell line-sensitivity data across an annotated collection of cancer cell lines called the Cancer Cell Line Encyclopedia, we show that genetic alterations for FGFR family members predict for sensitivity to NVP-BGJ398. For the first time, we report oncogenic FGFR1 amplification in osteosarcoma as a potential patient selection biomarker. Furthermore, we show that cancer cell lines harboring FGF19 copy number gain at the 11q13 amplicon are sensitive to NVP-BGJ398 only when concomitant expression of ß-klotho occurs. Thus, our findings provide the rationale for the clinical development of FGFR inhibitors in selected patients with cancer harboring tumors with the identified predictors of sensitivity. SIGNIFICANCE: The success of a personalized medicine approach using targeted therapies ultimately depends on being able to identify the patients who will benefit the most from any given drug. To this end, we have integrated the molecular profiles for more than 500 cancer cell lines with sensitivity data for the novel anticancer drug NVP-BGJ398 and showed that FGFR genetic alterations are the most significant predictors for sensitivity. This work has ultimately endorsed the incorporation of specific patient selection biomakers in the clinical trials for NVP-BGJ398.


Subject(s)
Neoplasms/drug therapy , Neoplasms/enzymology , Phenylurea Compounds/pharmacology , Pyrimidines/pharmacology , Receptors, Fibroblast Growth Factor/genetics , Animals , Cell Line, Tumor , Gene Amplification/drug effects , HEK293 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/enzymology , Liver Neoplasms/genetics , Mice , Models, Molecular , Neoplasms/genetics , Neoplasms/pathology , Phenylurea Compounds/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemistry , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/metabolism , Xenograft Model Antitumor Assays
5.
J Med Chem ; 54(20): 7066-83, 2011 Oct 27.
Article in English | MEDLINE | ID: mdl-21936542

ABSTRACT

A novel series of N-aryl-N'-pyrimidin-4-yl ureas has been optimized to afford potent and selective inhibitors of the fibroblast growth factor receptor tyrosine kinases 1, 2, and 3 by rationally designing the substitution pattern of the aryl ring. On the basis of its in vitro profile, compound 1h (NVP-BGJ398) was selected for in vivo evaluation and showed significant antitumor activity in RT112 bladder cancer xenografts models overexpressing wild-type FGFR3. These results support the potential therapeutic use of 1h as a new anticancer agent.


Subject(s)
Antineoplastic Agents/chemical synthesis , Phenylurea Compounds/chemical synthesis , Pyrimidines/chemical synthesis , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/pharmacokinetics , Angiogenesis Inhibitors/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Female , Humans , Mice , Mice, Nude , Models, Molecular , Neoplasm Transplantation , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Rats, Wistar , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Structure-Activity Relationship , Transplantation, Heterologous , Urinary Bladder Neoplasms
12.
Bioorg Med Chem Lett ; 13(9): 1581-4, 2003 May 05.
Article in English | MEDLINE | ID: mdl-12699760

ABSTRACT

Introduction of a nitrogen atom into the 6-position of a series of pyrazolo[3,4-b]pyridines led to a dramatic improvement in the potency of GSK-3 inhibition. Rationalisation of the binding mode suggested participation of a putative structural water molecule, which was subsequently confirmed by X-ray crystallography.


Subject(s)
Glycogen Synthase Kinase 3/antagonists & inhibitors , Pyrazoles/chemical synthesis , Pyridazines/chemical synthesis , Models, Molecular , Pyrazoles/chemistry , Pyridazines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...