Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 12 16.
Article in English | MEDLINE | ID: mdl-36524716

ABSTRACT

Learning from a limited number of experiences requires suitable inductive biases. To identify how inductive biases are implemented in and shaped by neural codes, we analyze sample-efficient learning of arbitrary stimulus-response maps from arbitrary neural codes with biologically-plausible readouts. We develop an analytical theory that predicts the generalization error of the readout as a function of the number of observed examples. Our theory illustrates in a mathematically precise way how the structure of population codes shapes inductive bias, and how a match between the code and the task is crucial for sample-efficient learning. It elucidates a bias to explain observed data with simple stimulus-response maps. Using recordings from the mouse primary visual cortex, we demonstrate the existence of an efficiency bias towards low-frequency orientation discrimination tasks for grating stimuli and low spatial frequency reconstruction tasks for natural images. We reproduce the discrimination bias in a simple model of primary visual cortex, and further show how invariances in the code to certain stimulus variations alter learning performance. We extend our methods to time-dependent neural codes and predict the sample efficiency of readouts from recurrent networks. We observe that many different codes can support the same inductive bias. By analyzing recordings from the mouse primary visual cortex, we demonstrate that biological codes have lower total activity than other codes with identical bias. Finally, we discuss implications of our theory in the context of recent developments in neuroscience and artificial intelligence. Overall, our study provides a concrete method for elucidating inductive biases of the brain and promotes sample-efficient learning as a general normative coding principle.


Subject(s)
Artificial Intelligence , Brain , Animals , Mice , Bias
2.
Nat Commun ; 12(1): 2914, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006842

ABSTRACT

A theoretical understanding of generalization remains an open problem for many machine learning models, including deep networks where overparameterization leads to better performance, contradicting the conventional wisdom from classical statistics. Here, we investigate generalization error for kernel regression, which, besides being a popular machine learning method, also describes certain infinitely overparameterized neural networks. We use techniques from statistical mechanics to derive an analytical expression for generalization error applicable to any kernel and data distribution. We present applications of our theory to real and synthetic datasets, and for many kernels including those that arise from training deep networks in the infinite-width limit. We elucidate an inductive bias of kernel regression to explain data with simple functions, characterize whether a kernel is compatible with a learning task, and show that more data may impair generalization when noisy or not expressible by the kernel, leading to non-monotonic learning curves with possibly many peaks.

3.
PLoS One ; 15(2): e0229083, 2020.
Article in English | MEDLINE | ID: mdl-32092107

ABSTRACT

Learning synaptic weights of spiking neural network (SNN) models that can reproduce target spike trains from provided neural firing data is a central problem in computational neuroscience and spike-based computing. The discovery of the optimal weight values can be posed as a supervised learning task wherein the weights of the model network are chosen to maximize the similarity between the target spike trains and the model outputs. It is still largely unknown whether optimizing spike train similarity of highly recurrent SNNs produces weight matrices similar to those of the ground truth model. To this end, we propose flexible heuristic supervised learning rules, termed Pre-Synaptic Pool Modification (PSPM), that rely on stochastic weight updates in order to produce spikes within a short window of the desired times and eliminate spikes outside of this window. PSPM improves spike train similarity for all-to-all SNNs and makes no assumption about the post-synaptic potential of the neurons or the structure of the network since no gradients are required. We test whether optimizing for spike train similarity entails the discovery of accurate weights and explore the relative contributions of local and homeostatic weight updates. Although PSPM improves similarity between spike trains, the learned weights often differ from the weights of the ground truth model, implying that connectome inference from spike data may require additional constraints on connectivity statistics. We also find that spike train similarity is sensitive to local updates, but other measures of network activity such as avalanche distributions, can be learned through synaptic homeostasis.


Subject(s)
Connectome/methods , Models, Neurological , Nerve Net/physiology , Supervised Machine Learning , Action Potentials/physiology , Animals , Computer Simulation , Presynaptic Terminals/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...