Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Neuromodulation ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37269282

ABSTRACT

OBJECTIVE: In adults with cervical spinal cord injury (SCI), transcutaneous spinal stimulation (scTS) has improved upper extremity strength and control. This novel noninvasive neurotherapeutic approach combined with training may modulate the inherent developmental plasticity of children with SCI, providing even greater improvements than training or stimulation alone. Because children with SCI represent a vulnerable population, we first must establish the safety and feasibility of any potential novel therapeutic approach. The objectives of this pilot study were to determine the safety, feasibility, and proof of principle of cervical and thoracic scTS for short-term effect on upper extremity strength in children with SCI. MATERIALS AND METHODS: In this nonrandomized, within-subject repeated measure design, seven participants with chronic cervical SCI performed upper extremity motor tasks without and with cervical (C3-C4 and C6-C7) and thoracic (T10-T11) site scTS. Safety and feasibility of using cervical and thoracic sites scTS were determined by the frequency count of anticipated and unanticipated risks (eg, pain, numbness). Proof-of-principle concept was tested via change in force production during hand motor tasks. RESULTS: All seven participants tolerated cervical and thoracic scTS across the three days, with a wide range of stimulation intensities (cervical sites = 20-70 mA and thoracic site = 25-190 mA). Skin redness at the stimulation sites was observed in four of 21 assessments (19%) and dissipated in a few hours. No episode of autonomic dysreflexia was observed or reported. Hemodynamic parameters (systolic blood pressure and heart rate) remained within stable limits (p > 0.05) throughout the assessment time points at baseline, with scTS, and after the experiment. Hand-grip and wrist-extension strength increased (p < 0.05) with scTS. CONCLUSIONS: We indicated that short-term application of scTS via two cervical and one thoracic site is safe and feasible in children with SCI and resulted in immediate improvements in hand-grip and wrist-extension strength in the presence of scTS. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT04032990.

2.
J Thorac Cardiovasc Surg ; 153(5): 1197-1203.e2, 2017 05.
Article in English | MEDLINE | ID: mdl-28073574

ABSTRACT

OBJECTIVE: Donor blood transfusion has been identified as a potential risk factor for primary graft dysfunction and by extension early mortality. We sought to define the contributing risk of donor transfusion on early mortality for lung transplant. METHODS: Donor and recipient data were abstracted from the Organ Procurement and Transplantation Network database updated through June 30, 2014, which included 86,398 potential donors and 16,255 transplants. Using the United Network for Organ Sharing 4-level designation of transfusion (no blood, 1-5 units, 6-10 units, and >10 units, massive), we analyzed all-cause mortality at 30-days with the use of logistic regression adjusted for confounders (ischemic time, donor age, recipient diagnosis, lung allocation score and recipient age, and recipient body mass index). Secondary analyses assessed 90-day and 1-year mortality and hospital length of stay. RESULTS: Of the 16,255 recipients transplanted, 8835 (54.35%) donors received at least one transfusion. Among those transfused, 1016 (6.25%) received a massive transfusion, defined as >10 units. Those donors with massive transfusion were most commonly young trauma patients. After adjustment for confounding variables, donor massive transfusion was associated significantly with an increased risk in 30-day (P = .03) and 90-day recipient mortality (P = .01) but not 1-year mortality (P = .09). There was no significant difference in recipient length of stay or hospital-free days with respect to donor transfusion. CONCLUSIONS: Massive donor blood transfusion (>10 units) was associated with early recipient mortality after lung transplantation. Conversely, submassive donor transfusion was not associated with increased recipient mortality. The mechanism of increased early mortality in recipients of lungs from massively transfused donors is unclear and needs further study but is consistent with excess mortality seen with primary graft dysfunction in the first 90 days posttransplant.


Subject(s)
Blood Transfusion/mortality , Lung Transplantation/mortality , Primary Graft Dysfunction/mortality , Tissue Donors , Adolescent , Adult , Cause of Death , Databases, Factual , Female , Humans , Length of Stay , Lung Transplantation/adverse effects , Male , Middle Aged , Primary Graft Dysfunction/diagnosis , Primary Graft Dysfunction/etiology , Retrospective Studies , Risk Assessment , Risk Factors , Time Factors , Tissue and Organ Procurement , Treatment Outcome , United States , Young Adult
3.
J Thorac Cardiovasc Surg ; 149(2): 596-602, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25439478

ABSTRACT

OBJECTIVE: Oxidant stress pathway activation during ischemia reperfusion injury may contribute to the development of primary graft dysfunction (PGD) after lung transplantation. We hypothesized that oxidant stress gene variation in recipients and donors is associated with PGD. METHODS: Donors and recipients from the Lung Transplant Outcomes Group (LTOG) cohort were genotyped using the Illumina IBC chip filtered for oxidant stress pathway genes. Single nucleotide polymorphisms (SNPs) grouped into SNP sets based on haplotype blocks within 49 oxidant stress genes selected from gene ontology pathways and literature review were tested for PGD association using a sequencing kernel association test. Analyses were adjusted for clinical confounding variables and population stratification. RESULTS: Three hundred ninety-two donors and 1038 recipients met genetic quality control standards. Thirty percent of patients developed grade 3 PGD within 72 hours. Donor NADPH oxidase 3 (NOX3) was associated with PGD (P = .01) with 5 individual significant loci (P values between .006 and .03). In recipients, variation in glutathione peroxidase (GPX1) and NRF-2 (NFE2L2) was significantly associated with PGD (P = .01 for both). The GPX1 association included 3 individual loci (P values between .006 and .049) and the NFE2L2 association included 2 loci (P = .03 and .05). Significant epistatic effects influencing PGD susceptibility were evident between 3 different donor blocks of NOX3 and recipient NFE2L2 (P = .026, P = .017, and P = .031). CONCLUSIONS: Our study has prioritized GPX1, NOX3, and NFE2L2 genes for future research in PGD pathogenesis, and highlights a donor-recipient interaction of NOX3 and NFE2L2 that increases the risk of PGD.


Subject(s)
Glutathione Peroxidase/genetics , Lung Transplantation , Membrane Proteins/genetics , NADPH Oxidases/genetics , NF-E2-Related Factor 2/genetics , Polymorphism, Single Nucleotide , Primary Graft Dysfunction/genetics , Adult , Epistasis, Genetic , Female , Genetic Variation , Genotype , Humans , Male , Middle Aged , Oxidative Stress , Risk , Tissue Donors , Glutathione Peroxidase GPX1
SELECTION OF CITATIONS
SEARCH DETAIL
...