Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
RSC Adv ; 11(15): 8619-8627, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-35423361

ABSTRACT

Amorphous titania samples prepared by ammonia solution neutralization of titanyl sulphate have been characterized by chemical and thermal analyses, and with reciprocal-space and real-space fitting of wide-angle synchrotron X-ray scattering data. A model that fits both the chemical and structural data comprises small segments of lepidocrocite-type layer that are offset by corner-sharing as in the monoclinic titanic acids H2Ti n O2n+1·mH2O. The amorphous phase composition that best fits the combined chemical and scattering data is [(NH4)3H21Ti20O52]·14H2O, where the formula within the brackets is the cluster composition and the H2O outside the brackets is physically adsorbed. The NH4 + cations are an integral part of the clusters and are bonded to layer anions at the corners of the offset layers, as occurs in the alkali metal stepped-layer titanates. The stepped-layer model is shown to give a consistent mechanism for the reaction of aqueous ammonia with solid hydrated titanyl sulphate, in which the amorphous product retains the exact size and shape of the reacting titanyl sulphate crystals.

2.
Phys Rev Lett ; 106(20): 207201, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21668258

ABSTRACT

The spin-wave excitations emerging from the chiral helically modulated 120° magnetic order in a langasite Ba3NbFe3Si2O14 enantiopure crystal were investigated by unpolarized and polarized inelastic neutron scattering. A dynamical fingerprint of the chiral ground state is obtained, singularized by (i) spectral weight asymmetries answerable to the structural chirality and (ii) a full chirality of the spin correlations observed over the whole energy spectrum. The intrinsic chiral nature of the spin waves' elementary excitations is shown in the absence of macroscopic time-reversal symmetry breaking.

3.
Phys Rev Lett ; 104(5): 057202, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-20366794

ABSTRACT

We report muon spin relaxation and {69,71}Ga nuclear quadrupolar resonance local-probe investigations of the kagome compound Pr3Ga5SiO14. Small quasistatic random internal fields develop below 40 K and persist down to our base temperature of 21 mK. They originate from hyperfine-enhanced 141Pr nuclear magnetism which requires a nonmagnetic Pr3+ crystal-field (CF) ground state. In addition, we observe a broad maximum of the relaxation rate at approximately 10 K which we attribute to the population of the first excited magnetic CF level. Our results yield a Van Vleck paramagnet picture, at variance with the formerly proposed spin-liquid ground state.

4.
J Phys Condens Matter ; 22(12): 126001, 2010 Mar 31.
Article in English | MEDLINE | ID: mdl-21389499

ABSTRACT

Using magnetic torque measurements on a NaNiO(2) single crystal, we have established the magnetic phase diagram of this triangular compound. It presents five different phases depending on the temperature (4-300 K) and magnetic field (0-22 T) revealing several spin reorientations coupled to different magnetic anisotropies.

5.
Phys Rev Lett ; 101(24): 247201, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-19113658

ABSTRACT

A novel doubly chiral magnetic order is found in the structurally chiral langasite compound Ba3NbFe3Si2O14. The magnetic moments are distributed over planar frustrated triangular lattices of triangle units. On each of these they form the same triangular configuration. This ferrochiral arrangement is helically modulated from plane to plane. Unpolarized neutron scattering on a single crystal associated with spherical neutron polarimetry proved that a single triangular chirality together with a single helicity is stabilized in an enantiopure crystal. A mean-field analysis allows us to discern the relevance on this selection of a twist in the plane to plane super-superexchange paths.

6.
Phys Rev Lett ; 100(23): 237204, 2008 Jun 13.
Article in English | MEDLINE | ID: mdl-18643541

ABSTRACT

The static and dynamic magnetic properties of the Nd(3)Ga(5)SiO(14) compound, which appears as the first materialization of a rare-earth kagome-type lattice, were reexamined, owing to contradictory results in the previous studies. Neutron scattering, magnetization, and specific heat measurements were performed and analyzed, in particular, by fully taking account of the crystal electric field effects on the Nd(3+) ions. One of the novel findings is that the peculiar temperature independent spin dynamics observed below 10 K expresses single-ion quantum processes. This would short-circuit the frustration induced cooperative dynamics, which would emerge only at very low temperature.

7.
Phys Rev Lett ; 100(14): 147201, 2008 Apr 11.
Article in English | MEDLINE | ID: mdl-18518066

ABSTRACT

We report a local-probe investigation of the magnetically anisotropic kagome compound Nd3Ga5SiO14. Our zero-field muon spin relaxation (muSR) results provide direct evidence of a fluctuating collective paramagnetic state down to 60 mK, supported by a wipeout of the Ga nuclear magnetic resonance (NMR) signal below 25 K. At 60 mK a dynamics crossover to a much more static state is observed by muSR in magnetic fields above 0.5 T. Accordingly, the NMR signal is recovered at low T above a threshold field, revealing a rapid temperature and field variation of the magnetic fluctuations.

8.
Phys Rev Lett ; 96(19): 197205, 2006 May 19.
Article in English | MEDLINE | ID: mdl-16803138

ABSTRACT

Dynamical magnetic correlations in the geometrically frustrated Nd(3)Ga(5)SiO(14) compound were probed by inelastic neutron scattering on a single crystal. A scattering signal with a ring shape distribution in reciprocal space and unprecedented dispersive features was discovered. Comparison with calculated static magnetic scattering from models of correlated spins suggests that the observed phase is a spin liquid inherent to an antiferromagnetic kagomé-like lattice of anisotropic Nd moments.

9.
Phys Rev Lett ; 95(18): 186405, 2005 Oct 28.
Article in English | MEDLINE | ID: mdl-16383928

ABSTRACT

Crystallographic, magnetic, and NMR properties of a Na1CoO2 single crystal with x approximately = 1 are presented. We identify the stoichiometric Na1CoO2 phase, which is shown to be a nonmagnetic insulator, as expected for homogeneous planes of Co3+ ions with S = 0. In addition, we present evidence that, because of slight average Na deficiency, chemical and electronic phase separation leads to a segregation of Na vacancies into the well-defined, magnetic, Na0.8CoO2 phase. The importance of phase separation is discussed in the context of magnetic order for x approximately = 0.8 and the occurrence of a metal-insulator transition for x --> 1.

10.
Carbohydr Res ; 329(3): 655-65, 2000 Nov 17.
Article in English | MEDLINE | ID: mdl-11128593

ABSTRACT

The cyclic tetrasaccharide cyclo-[-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->] is the major compound obtained by the action of endo-alternases on the alternan polysaccharide. Crystals of this cyclo-tetra-glucose belong to the orthorhombic space group P2(1)2(1)2(1) with a = 7.620(5), b = 12.450(5) and c = 34.800(5) A. The asymmetric unit contains one tetrasaccharide together with five water molecules. The tetrasaccharide adopts a plate-like overall shape with a very shallow depression on one side. The shape is not fully symmetrical and this is clearly apparent on comparing the (phi, psi) torsion angles of the two alpha-(1-->6) linkages. There is almost 10 degrees differences in phi and more than 20 degrees differences in psi. The hydrogen bond network is asymmetric, with a single intramolecular hydrogen bond: O-2 of glucose ring 1 being the donor to O-2 of glucose ring 3. These two hydroxyl groups are located below the ring and their orientation, dictated by this hydrogen bond, makes the floor of the plate. Among the five water molecules, one located above the center of the plate occupies perfectly the shallow depression in the plate shape formed by the tetrasaccharide. Molecular dynamics simulation of the tetrasaccharide in explicit water allows rationalization of the discrepancies observed between the X-ray structures and data obtained previously by NMR.


Subject(s)
Oligosaccharides/chemistry , Carbohydrate Conformation , Carbohydrate Sequence , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Molecular Sequence Data , Molecular Structure , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...