Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(25): e2315481121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38870060

ABSTRACT

Intracellular bacterial pathogens divert multiple cellular pathways to establish their niche and persist inside their host. Coxiella burnetii, the causative agent of Q fever, secretes bacterial effector proteins via its Type 4 secretion system to generate a Coxiella-containing vacuole (CCV). Manipulation of lipid and protein trafficking by these effectors is essential for bacterial replication and virulence. Here, we have characterized the lipid composition of CCVs and found that the effector Vice interacts with phosphoinositides and membranes enriched in phosphatidylserine and lysobisphosphatidic acid. Remarkably, eukaryotic cells ectopically expressing Vice present compartments that resemble early CCVs in both morphology and composition. We found that the biogenesis of these compartments relies on the double function of Vice. The effector protein initially localizes at the plasma membrane of eukaryotic cells where it triggers the internalization of large vacuoles by macropinocytosis. Then, Vice stabilizes these compartments by perturbing the ESCRT machinery. Collectively, our results reveal that Vice is an essential C. burnetii effector protein capable of hijacking two major cellular pathways to shape the bacterial replicative niche.


Subject(s)
Bacterial Proteins , Coxiella burnetii , Endosomal Sorting Complexes Required for Transport , Pinocytosis , Vacuoles , Endosomal Sorting Complexes Required for Transport/metabolism , Bacterial Proteins/metabolism , Coxiella burnetii/metabolism , Vacuoles/metabolism , Vacuoles/microbiology , Humans , HeLa Cells , Cell Membrane/metabolism , Animals , Phosphatidylinositols/metabolism
2.
Comput Struct Biotechnol J ; 21: 5609-5619, 2023.
Article in English | MEDLINE | ID: mdl-38047232

ABSTRACT

Mitochondria are essential organelles that play crucial roles in cellular energy metabolism, calcium signaling and apoptosis. Their importance in tissue homeostasis and stress responses, combined to their ability to transition between various structural and functional states, make them excellent organelles for monitoring cellular health. Quantitative assessment of mitochondrial morphology can therefore provide valuable insights into environmentally-induced cell damage. High-content screening (HCS) provides a powerful tool for analyzing organelles and cellular substructures. We developed a fully automated and miniaturized HCS wet-plus-dry pipeline (MITOMATICS) exploiting mitochondrial morphology as a marker for monitoring cellular health or damage. MITOMATICS uses an in-house, proprietary software (MitoRadar) to enable fast, exhaustive and cost-effective analysis of mitochondrial morphology and its inherent diversity in live cells. We applied our pipeline and big data analytics software to assess the mitotoxicity of selected chemicals, using the mitochondrial uncoupler CCCP as an internal control. Six different pesticides (inhibiting complexes I, II and III of the mitochondrial respiratory chain) were tested as individual compounds and five other pesticides present locally in Occitanie (Southern France) were assessed in combination to determine acute mitotoxicity. Our results show that the assayed pesticides exhibit specific signatures when used as single compounds or chemical mixtures and that they function synergistically to impact mitochondrial architecture. Study of environment-induced mitochondrial damage has the potential to open new fields in mechanistic toxicology, currently underexplored by regulatory toxicology and exposome research. Such exploration could inform health policy guidelines and foster pharmacological intervention, water, air and soil pollution control and food safety.

3.
EMBO Mol Med ; 15(7): e16267, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37144692

ABSTRACT

Giant axonal neuropathy (GAN) is a fatal neurodegenerative disorder for which there is currently no treatment. Affecting the nervous system, GAN starts in infancy with motor deficits that rapidly evolve toward total loss of ambulation. Using the gan zebrafish model that reproduces the loss of motility as seen in patients, we conducted the first pharmacological screening for the GAN pathology. Here, we established a multilevel pipeline to identify small molecules restoring both the physiological and the cellular deficits in GAN. We combined behavioral, in silico, and high-content imaging analyses to refine our Hits to five drugs restoring locomotion, axonal outgrowth, and stabilizing neuromuscular junctions in the gan zebrafish. The postsynaptic nature of the drug's cellular targets provides direct evidence for the pivotal role the neuromuscular junction holds in the restoration of motility. Our results identify the first drug candidates that can now be integrated in a repositioning approach to fasten therapy for the GAN disease. Moreover, we anticipate both our methodological development and the identified hits to be of benefit to other neuromuscular diseases.


Subject(s)
Giant Axonal Neuropathy , Animals , Giant Axonal Neuropathy/diagnosis , Giant Axonal Neuropathy/pathology , Giant Axonal Neuropathy/therapy , Cytoskeletal Proteins , Zebrafish , Neuromuscular Junction
4.
Front Mol Neurosci ; 15: 956582, 2022.
Article in English | MEDLINE | ID: mdl-36204134

ABSTRACT

The zebrafish (Danio rerio) is a vertebrate species offering multitude of advantages for the study of conserved biological systems in human and has considerably enriched our knowledge in developmental biology and physiology. Being equally important in medical research, the zebrafish has become a critical tool in the fields of diagnosis, gene discovery, disease modeling, and pharmacology-based therapy. Studies on the zebrafish neuromuscular system allowed for deciphering key molecular pathways in this tissue, and established it as a model of choice to study numerous motor neurons, neuromuscular junctions, and muscle diseases. Starting with the similarities of the zebrafish neuromuscular system with the human system, we review disease models associated with the neuromuscular system to focus on current methodologies employed to study them and outline their caveats. In particular, we put in perspective the necessity to develop standardized and high-resolution methodologies that are necessary to deepen our understanding of not only fundamental signaling pathways in a healthy tissue but also the changes leading to disease phenotype outbreaks, and offer templates for high-content screening strategies. While the development of high-throughput methodologies is underway for motility assays, there is no automated approach to quantify the key molecular cues of the neuromuscular junction. Here, we provide a novel high-throughput imaging methodology in the zebrafish that is standardized, highly resolutive, quantitative, and fit for drug screening. By providing a proof of concept for its robustness in identifying novel molecular players and therapeutic drugs in giant axonal neuropathy (GAN) disease, we foresee that this new tool could be useful for both fundamental and biomedical research.

5.
Sci Rep ; 12(1): 5422, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361811

ABSTRACT

Colorectal cancer (CRC) ranks third among the most frequent malignancies and represents the second most common cause of cancer-related deaths worldwide. By interfering with the DNA replication process of cancer cells, several chemotherapeutic molecules used in CRC therapy induce replication stress (RS). At the cellular level, this stress is managed by the ATR-CHK1 pathway, which activates the replication checkpoint. In recent years, the therapeutic value of targeting this pathway has been demonstrated. Moreover, MSI + (microsatellite instability) tumors frequently harbor a nonsense, heterozygous mutation in the ATR gene. Using isogenic HCT116 clones, we showed that this mutation of ATR sensitizes the cells to several drugs, including SN-38 (topoisomerase I inhibitor) and VE-822 (ATR inhibitor) and exacerbates their synergistic effects. We showed that this mutation bottlenecks the replication checkpoint leading to extensive DNA damage. The combination of VE-822 and SN-38 induces an exhaustion of RPA and a subsequent replication catastrophe. Surviving cells complete replication and accumulate in G2 in a DNA-PK-dependent manner, protecting them from cell death. Together, our results suggest that RPA and DNA-PK represent promising therapeutic targets to optimize the inhibition of the ATR-CHK1 pathway in oncology. Ultimately, ATR frameshift mutations found in patients may also represent important prognostic factors.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Colorectal Neoplasms , DNA-Activated Protein Kinase , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , Colorectal Neoplasms/genetics , DNA-Activated Protein Kinase/genetics , Humans , Mutation
6.
Stem Cell Reports ; 17(4): 835-848, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35276090

ABSTRACT

Tumor recurrence is often attributed to cancer stem cells (CSCs). We previously demonstrated that down-regulation of Pregnane X Receptor (PXR) decreases the chemoresistance of CSCs and prevents colorectal cancer recurrence. Currently, no PXR inhibitor is usable in clinic. Here, we identify miR-148a as a targetable element upstream of PXR signaling in CSCs, which when over-expressed decreases PXR expression and impairs tumor relapse after chemotherapy in mouse tumor xenografts. We then develop a fluorescent reporter screen for miR-148a activators and identify the anti-helminthic drug niclosamide as an inducer of miR-148a expression. Consequently, niclosamide decreased PXR expression and CSC numbers in colorectal cancer patient-derived cell lines and synergized with chemotherapeutic agents to prevent CSC chemoresistance and tumor recurrence in vivo. Our study suggests that endogenous miRNA inducers is a viable strategy to down-regulate PXR and illuminates niclosamide as a neoadjuvant repurposing strategy to prevent tumor relapse in colon cancer.


Subject(s)
Colonic Neoplasms , MicroRNAs , Animals , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/metabolism , Niclosamide/metabolism , Niclosamide/pharmacology , Niclosamide/therapeutic use , Pregnane X Receptor/genetics , Pregnane X Receptor/metabolism
7.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33658388

ABSTRACT

Ki-67 is a nuclear protein that is expressed in all proliferating vertebrate cells. Here, we demonstrate that, although Ki-67 is not required for cell proliferation, its genetic ablation inhibits each step of tumor initiation, growth, and metastasis. Mice lacking Ki-67 are resistant to chemical or genetic induction of intestinal tumorigenesis. In established cancer cells, Ki-67 knockout causes global transcriptome remodeling that alters the epithelial-mesenchymal balance and suppresses stem cell characteristics. When grafted into mice, tumor growth is slowed, and metastasis is abrogated, despite normal cell proliferation rates. Yet, Ki-67 loss also down-regulates major histocompatibility complex class I antigen presentation and, in the 4T1 syngeneic model of mammary carcinoma, leads to an immune-suppressive environment that prevents the early phase of tumor regression. Finally, genes involved in xenobiotic metabolism are down-regulated, and cells are sensitized to various drug classes. Our results suggest that Ki-67 enables transcriptional programs required for cellular adaptation to the environment. This facilitates multiple steps of carcinogenesis and drug resistance, yet may render cancer cells more susceptible to antitumor immune responses.


Subject(s)
Carcinogenesis/metabolism , Gene Expression Regulation, Neoplastic , Ki-67 Antigen/metabolism , Mammary Neoplasms, Animal/metabolism , Neoplasm Proteins/metabolism , Transcription, Genetic , Animals , Carcinogenesis/genetics , Female , Gene Knock-In Techniques , Gene Knockout Techniques , Ki-67 Antigen/genetics , Mammary Neoplasms, Animal/genetics , Mice , Mice, Knockout , Neoplasm Proteins/genetics
8.
Oncotarget ; 10(43): 4407-4423, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31320994

ABSTRACT

Dicer, an endoribonuclease best-known for its role in microRNA biogenesis and RNA interference pathway, has been shown to play a role in the DNA damage response and repair of double-stranded DNA breaks (DSBs) in mammalian cells. However, it remains unknown whether Dicer is also important to preserve genome integrity upon replication stress. To address this question, we focused our study on common fragile sites (CFSs), which are susceptible to breakage after replication stress. We show that inhibition of the Dicer pathway leads to an increase in CFS expression upon induction of replication stress and to an accumulation of 53BP1 nuclear bodies, indicating transmission of replication-associated damage. We also show that in absence of a functional Dicer or Drosha, the assembly into nuclear foci of the Fanconi anemia (FA) protein FANCD2 and of the replication and checkpoint factor TopBP1 in response to replication stress is impaired, and the activation of the S-phase checkpoint is defective. Based on these results, we propose that Dicer pre-vents genomic instability after replication stress, by allowing the proper recruitment to stalled forks of proteins that are necessary to maintain replication fork stability and activate the S-phase checkpoint, thus limiting cells from proceeding into mitosis with under-replicated DNA.

9.
Mol Nutr Food Res ; 61(5)2017 05.
Article in English | MEDLINE | ID: mdl-27957816

ABSTRACT

SCOPE: Here we tested the hypothesis that ascorbic acid (AA) is a signaling molecule acting on stem cells via the differentiation of mesoderm derivatives, including myocytes, osteocytes, and adipocytes. MATERIAL AND METHODS: Investigations used a murine embryonic stem cell line CGR8 able to differentiate into different cell types and treated or not with ascorbic acid. Differentiation was tracked mainly through cellular anatomy (including presence of beating cardiomyocytes) and expression of specific markers. CONCLUSION: The study demonstrated that AA drives mesoderm-derived stem cell differentiation toward myogenesis and osteogenesis and also inhibits adipogenesis. Further experiments found that AA competes with retinoic acid (RA) to drive cell differentiation in a dose-dependent manner: AA inhibited neurogenic differentiation and stimulated myogenesis whereas RA did the reverse. The AA-dependent differentiation of embryonic stem cells was shown to involve a p38 MAPK/CREB pathway, probably stimulated by cAMP via adenylate cyclases. In addition, SVCT2, the intracellular transporter of AA, acted as a receptor. Finally, we showed that activation/repression of specific differentiation markers is associated with epigenetic changes in their associated promoters. We discuss the impact of these findings in terms of obesity and aging.


Subject(s)
Ascorbic Acid/pharmacology , CREB-Binding Protein/metabolism , Embryonic Stem Cells/drug effects , Mesoderm/cytology , Sodium-Coupled Vitamin C Transporters/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Adipogenesis/drug effects , Animals , CREB-Binding Protein/genetics , Cell Differentiation/drug effects , Cells, Cultured , Embryonic Stem Cells/cytology , Mice , Muscle Cells/cytology , Muscle Cells/drug effects , Muscle Development/drug effects , Osteocytes/cytology , Osteocytes/drug effects , Osteogenesis/drug effects , Sodium-Coupled Vitamin C Transporters/genetics , Tretinoin/pharmacology , p38 Mitogen-Activated Protein Kinases/genetics
11.
Orphanet J Rare Dis ; 10: 56, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25947624

ABSTRACT

BACKGROUND: We previously described that fibroblasts from animal models of CMTX1 present genomic instability and poor connexon activity. In vivo, these transgenic mice present motor deficits. This phenotype could be significantly reverted by treatment with (CamKII) inhibitors. The objective of this study is to translate our findings to patients. METHODS: We cultured fibroblasts from skin biopsies of CMTX1 patients and analyzed cells for genomic instabilty, connexon activity, and potential correction by CamKII inhibitors. RESULTS: The phenotypic analysis of these cells confirmed strong similarities between the GJB1 transgenic mouse cell lines and CMTX1 patient fibroblast cell lines. Both present mitotic anomalies, centrosome overduplication, and connexon activity deficit. This phenotype is corrected by CamKII inhibitors. CONCLUSIONS: Our data demonstrate that fibroblasts from CMTX1 patients present a phenotype similar to transgenic lines that can be corrected by CamKII inhibitors. This presents a track to develop therapeutic strategies for CMTX1 treatment.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Charcot-Marie-Tooth Disease/genetics , Genomic Instability/genetics , Adolescent , Adult , Animals , Cell Line , Enzyme Inhibitors/pharmacology , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Genomic Instability/drug effects , Humans , Male , Mice , Young Adult
12.
Front Cell Dev Biol ; 2: 29, 2014.
Article in English | MEDLINE | ID: mdl-25364736

ABSTRACT

Ascorbic acid (AA) is the active component of vitamin C and antioxidant activity was long considered to be the primary molecular mechanism underlying the physiological actions of AA. We recently demonstrated that AA is a competitive inhibitor of adenylate cyclase, acting as a global regulator of intracellular cyclic adenosine monophosphate (cAMP) levels. Our study, therefore, aimed to determine new targets of AA that would account for its potential effect on signal transduction, particularly during cell differentiation. We demonstrated that AA is an inhibitor of pre-adipocyte cell line differentiation, with a dose-dependent effect. Additionally, we describe the impact of AA on the expression of genes involved in adipogenesis and/or the adipocyte phenotype. Moreover, our data suggest that treatment with AA partially reverses lipid accumulation in mature adipocytes. These properties likely reflect the function of AA as a global regulator of the cAMP pool, since an analog of AA without any antioxidant properties elicited the same effect. Additionally, we demonstrated that AA inhibits adipogenesis in OP9 mesenchymal cell line and drives the differentiation of this line toward osteogenesis. Finally, our data suggest that the intracellular transporter SVCT2 is involved in these processes and may act as a receptor for AA.

13.
Front Neurosci ; 8: 151, 2014.
Article in English | MEDLINE | ID: mdl-24982612

ABSTRACT

Mutation in the Gjb1 gene, coding for a connexin (Cx32), is associated with an inherited peripheral neuropathic disorder (X-linked Charcot-Marie-Tooth, CMTX). Our previous work reported that transgenic animals expressing a human Gjb1 transgene present polyploidy and abnormal over-duplication of the centrosome, suggesting a role for Gjb1 in mitotic stability. In this article, we propose mechanisms by which mutations in Gjb1 induce mitotic instability and discuss its potential relation with the CMTX phenotype. We showed that transgenic cells exhibit CamKII over-stimulation, a phenomenon that has been linked to mitotic instability (polyploidy, nuclear volume and centrosome over-duplication), that is reversed by CamKII inhibitors. We also demonstrate that connexon activity is partially restored in transgenic cells with CamKII inhibitors. Our model supports the role for Pim1, a kinase that has been associated with genomic instability in cancers, in genomic instability in Cx32 mutations. Regarding in vivo phenotype, we showed that degradation on the rotarod test in our transgenic mice is significantly lowered by treatment with a CamKII inhibitor (KN93). This effect was seen in two lines with different point mutations in GJB1, and stopping the treatment led to degradation of the phenotype.

14.
Cancer Lett ; 338(2): 317-27, 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-23791877

ABSTRACT

Ascorbic acid (AA) has long been described as an antiproliferative agent. However, the molecule has to be used at a very high concentrations, which necessitates i.v. injection, and the tight regulation of in-blood and in-cell AA concentrations making it impossible to hold very high concentrations for any substantial length of time. Here we report evidence that AA derivates are antiproliferative and cytotoxic molecules at an IC50 lower than AA itself. Among these new molecules, we selected K873 that has cytotoxic and antiproliferative effects on different human tumor cells at tenth micromolar concentration. In a further step, we demonstrated that K873 selectively to kills only cancer cells without being toxic for normal non-dividing (or poorly dividing) cells. Finally, we tested the effect of treatment with K873 (5-10 mg/kg/d by i.p. route) on tumor progression in xenografted immunodeficient mice (BALB/c Nude). Our data suggest that K873 administration strongly inhibits tumor progression. In a previous study using microarrays, we demonstrated that AA decreases the expression of two genes families involved in cell cycle progression, i.e. initiation factor of translation and tRNA synthetases. Here we show that K873 treatment also decreases the expression of four of these genes in xenografted tumors, in proportions similar to that previously observed with AA. Taken together, our data suggest that AA and K873 share similar action. Our findings suggest that AA derivatives could be a promising new class of anti-cancer drugs, either alone or in combination with other molecules.


Subject(s)
Ascorbic Acid/analogs & derivatives , Animals , Ascorbic Acid/pharmacology , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Female , Fibroblasts/cytology , Fibroblasts/drug effects , HT29 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Xenograft Model Antitumor Assays
15.
Glia ; 60(3): 457-64, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22131286

ABSTRACT

The X-linked form of Charcot-Marie-Tooth disorder (CMTX) is the second most frequent type (15% of CMT forms). It involves the GJB1 gene coding for connexin 32, a protein involved in gap junction formation and function. There is no curative treatment for CMTX. We present data on transgenic lines that was accomplished by inserting a human BAC carrying the GJB1 gene, in which two different mutations in connexin 32 (Cx32) observed in patients were introduced. Investigation of these models implicated Cx32 in the control of mitotic stability. The model in which Gjb1 has been invalidated had the same phenotype. This new function for Cx32 was recently confirmed by results from the Mitocheck program. Locomotor impediment was seen in the behavior of these animals, the severity of which correlated with transgene copy number and RNA expression.


Subject(s)
Connexins/metabolism , Locomotion/genetics , Mitosis/genetics , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cells, Cultured , Centrosome/physiology , Connexins/genetics , Embryo, Mammalian , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Gene Dosage/genetics , Humans , Locomotion/physiology , Mice , Mice, Transgenic , Mitosis/physiology , Mutation/genetics , Rotarod Performance Test , Gap Junction beta-1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...