Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(15): 4047-4055, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38580324

ABSTRACT

Liquid-liquid phase separation (LLPS) plays a key role in the compartmentalization of cells via the formation of biomolecular condensates. Here, we combined atomistic molecular dynamics (MD) simulations and terahertz (THz) spectroscopy to determine the solvent entropy contribution to the formation of condensates of the human eye lens protein γD-Crystallin. The MD simulations reveal an entropy tug-of-war between water molecules that are released from the protein droplets and those that are retained within the condensates, two categories of water molecules that were also assigned spectroscopically. A recently developed THz-calorimetry method enables quantitative comparison of the experimental and computational entropy changes of the released water molecules. The strong correlation mutually validates the two approaches and opens the way to a detailed atomic-level understanding of the different driving forces underlying the LLPS.


Subject(s)
Phase Separation , Water , Humans , Solvents , Entropy , Calorimetry
2.
J Am Chem Soc ; 146(12): 8308-8319, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38483324

ABSTRACT

Modulation of absorbance and emission is key for the design of chiral chromophores. Accessing a series of compounds absorbing and emitting (circularly polarized) light over a wide spectral window and often toward near-infrared is of practical value in (chir)optical applications. Herein, by late-stage functionalization on derivatives bridging triaryl methyl and helicene domains, we have achieved the regioselective triple introduction of para electron-donating or electron-withdrawing substituents. Extended tuning of electronic (e.g., E1/2red -1.50 V → -0.68 V) and optical (e.g., emission covering from 550 to 850 nm) properties is achieved for the cations and neutral radicals; the latter compounds being easily prepared by mono electron reductions under electrochemical or chemical conditions. While luminescence quantum yields can be increased up to 70% in the cationic series, strong Cotton effects are obtained for certain radicals at low energies (λabs ∼ 700-900 nm) with gabs values above 10-3. The open-shell electronic nature of the radicals was further characterized by electron paramagnetic resonance revealing an important spin density delocalization that contributes to their persistence.

3.
J Phys Chem A ; 127(31): 6447-6466, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37524058

ABSTRACT

Nitroxides are common EPR sensors of microenvironmental properties such as polarity, numbers of H-bonds, pH, and so forth. Their solvation in an aqueous environment is facilitated by their high propensity to form H-bonds with the surrounding water molecules. Their g- and A-tensor elements are key parameters to extracting the properties of their microenvironment. In particular, the gxx value of nitroxides is rich in information. It is known to be characterized by discrete values representing nitroxide populations previously assigned to have different H-bonds with the surrounding waters. Additionally, there is a large g-strain, that is, a broadening of g-values associated with it, which is generally correlated with environmental and structural micro-heterogeneities. The g-strain is responsible for the frequency dependence of the apparent line width of the EPR spectra, which becomes evident at high field/frequency. Here, we address the molecular origin of the gxx heterogeneity and of the g-strain of a nitroxide moiety (HMI: 2,2,3,4,5,5-hexamethylimidazolidin-1-oxyl, C9H19N2O) in water. To treat the solvation effect on the g-strain, we combined a multi-frequency experimental approach with ab initio molecular dynamics simulations for structural sampling and quantum chemical EPR property calculations at the highest realistically affordable level, including an explicitly micro-solvated HMI ensemble and the embedded cluster reference interaction site model. We could clearly identify the distinct populations of the H-bonded nitroxides responsible for the gxx heterogeneity experimentally observed, and we dissected the role of the solvation shell, H-bond formation, and structural deformation of the nitroxide in the creation of the g-strain associated with each nitroxide subensemble. Two contributions to the g-strain were identified in this study. The first contribution depends on the number of hydrogen bonds formed between the nitroxide and the solvent because this has a large and well-understood effect on the gxx-shift. This contribution can only be resolved at high resonance frequencies, where it leads to distinct peaks in the gxx region. The second contribution arises from configurational fluctuations of the nitroxide that necessarily lead to g-shift heterogeneity. These contributions cannot be resolved experimentally as distinct resonances but add to the line broadening. They can be quantitatively analyzed by studying the apparent line width as a function of microwave frequency. Interestingly, both theory and experiment confirm that this contribution is independent of the number of H-bonds. Perhaps even more surprisingly, the theoretical analysis suggests that the configurational fluctuation broadening is not induced by the solvent but is inherently present even in the gas phase. Moreover, the calculations predict that this broadening decreases upon solvation of the nitroxide.

4.
J Phys Chem B ; 127(30): 6668-6674, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37490415

ABSTRACT

Electron paramagnetic resonance spectroscopy (EPR) is mostly used in structural biology in conjunction with pulsed dipolar spectroscopy (PDS) methods to monitor interspin distances in biomacromolecules at cryogenic temperatures both in vitro and in cells. In this context, spectroscopically orthogonal spin labels were shown to increase the information content that can be gained per sample. Here, we exploit the characteristic properties of gadolinium and nitroxide spin labels at physiological temperatures to study side chain dynamics via continuous wave (cw) EPR at X band, surface water dynamics via Overhauser dynamic nuclear polarization at X band and short-range distances via cw EPR at high fields. The presented approaches further increase the accessible information content on biomolecules tagged with orthogonal labels providing insights into molecular interactions and dynamic equilibria that are only revealed under physiological conditions.


Subject(s)
Biology , Spin Labels , Temperature , Electron Spin Resonance Spectroscopy/methods
5.
Prog Nucl Magn Reson Spectrosc ; 134-135: 1-19, 2023.
Article in English | MEDLINE | ID: mdl-37321755

ABSTRACT

Macromolecular protein assemblies are of fundamental importance for many processes inside the cell, as they perform complex functions and constitute central hubs where reactions occur. Generally, these assemblies undergo large conformational changes and cycle through different states that ultimately are connected to specific functions further regulated by additional small ligands or proteins. Unveiling the 3D structural details of these assemblies at atomic resolution, identifying the flexible parts of the complexes, and monitoring with high temporal resolution the dynamic interplay between different protein regions under physiological conditions is key to fully understanding their properties and to fostering biomedical applications. In the last decade, we have seen remarkable advances in cryo-electron microscopy (EM) techniques, which deeply transformed our vision of structural biology, especially in the field of macromolecular assemblies. With cryo-EM, detailed 3D models of large macromolecular complexes in different conformational states became readily available at atomic resolution. Concomitantly, nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy (EPR) have benefited from methodological innovations which also improved the quality of the information that can be achieved. Such enhanced sensitivity widened their applicability to macromolecular complexes in environments close to physiological conditions and opened a path towards in-cell applications. In this review we will focus on the advantages and challenges of EPR techniques with an integrative approach towards a complete understanding of macromolecular structures and functions.


Subject(s)
Proteins , Electron Spin Resonance Spectroscopy/methods , Cryoelectron Microscopy , Models, Molecular , Magnetic Resonance Spectroscopy , Macromolecular Substances
6.
Biochim Biophys Acta Bioenerg ; 1864(2): 148953, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36572329

ABSTRACT

The multi-subunit membrane protein complex photosystem II (PSII) catalyzes the light-driven oxidation of water and with this the initial step of photosynthetic electron transport in plants, algae, and cyanobacteria. Its biogenesis is coordinated by a network of auxiliary proteins that facilitate the stepwise assembly of individual subunits and cofactors, forming various intermediate complexes until fully functional mature PSII is present at the end of the process. In the current study, we purified PSII complexes from a mutant line of the thermophilic cyanobacterium Thermosynechococcus vestitus BP-1 in which the extrinsic subunit PsbO, characteristic for active PSII, was fused with an N-terminal Twin-Strep-tag. Three distinct PSII complexes were separated by ion-exchange chromatography after the initial affinity purification. Two complexes differ in their oligomeric state (monomeric and dimeric) but share the typical subunit composition of mature PSII. They are characterized by the very high oxygen evolving activity of approx. 6000 µmol O2·(mg Chl·h)-1. Analysis of the third (heterodimeric) PSII complex revealed lower oxygen evolving activity of approx. 3000 µmol O2·(mg Chl·h)-1 and a manganese content of 2.7 (±0.2) per reaction center compared to 3.7 (±0.2) of fully active PSII. Mass spectrometry and time-resolved fluorescence spectroscopy further indicated that PsbO is partially replaced by Psb27 in this PSII fraction, thus implying a role of this complex in PSII repair.


Subject(s)
Cyanobacteria , Photosystem II Protein Complex , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/chemistry , Cyanobacteria/metabolism , Oligopeptides/metabolism , Oxygen/metabolism
7.
Chemistry ; 29(3): e202203149, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36239437

ABSTRACT

Carbenes with conjugatively connected redox system act as "auto-umpolung" ligands. Due to their electronic flexibility, they should also be particularly suitable to stabilize open-shell species. Herein, the first neutral radical of such sort is described in form of a dialkylamino-substituted bis(dicyanomethylene)cyclopropanide. Despite the absence of steric shielding, the radical is stable for an extended amount of time and was consequently characterized in solution via EPR measurements. These data and accompanying X-ray structural analyses indicate that the radical species is in equilibrium with aggregates (formed via π-stacking) and dimers (obtained via σ-bond formation between methylene carbons).


Subject(s)
Ligands , Oxidation-Reduction
8.
Sci Adv ; 8(41): eabn6845, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36223470

ABSTRACT

Membrane proteins are currently investigated after detergent extraction from native cellular membranes and reconstitution into artificial liposomes or nanodiscs, thereby removing them from their physiological environment. However, to truly understand the biophysical properties of membrane proteins in a physiological environment, they must be investigated within living cells. Here, we used a spin-labeled nanobody to interrogate the conformational cycle of the ABC transporter MsbA by double electron-electron resonance. Unexpectedly, the wide inward-open conformation of MsbA, commonly considered a nonphysiological state, was found to be prominently populated in Escherichia coli cells. Molecular dynamics simulations revealed that extensive lateral portal opening is essential to provide access of its large natural substrate core lipid A to the binding cavity. Our work paves the way to investigate the conformational landscape of membrane proteins in cells.


Subject(s)
ATP-Binding Cassette Transporters , Escherichia coli Proteins , Escherichia coli , ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , Detergents/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Lipid A , Liposomes/metabolism , Membrane Proteins/metabolism , Protein Conformation
9.
Methods Enzymol ; 666: 79-119, 2022.
Article in English | MEDLINE | ID: mdl-35465930

ABSTRACT

Different types of spin labels are currently available for structural studies of biomolecules both in vitro and in cells using Electron Paramagnetic Resonance (EPR) and pulse dipolar spectroscopy (PDS). Each type of label has its own advantages and disadvantages, that will be addressed in this chapter. The spectroscopically distinct properties of the labels have fostered new applications of PDS aimed to simultaneously extract multiple inter-label distances on the same sample. In fact, combining different labels and choosing the optimal strategy to address their inter-label distances can increase the information content per sample, and this is pivotal to better characterize complex multi-component biomolecular systems. In this review, we provide a brief background of the spectroscopic properties of the four most common orthogonal spin labels for PDS measurements and focus on the various methods at disposal to extract homo- and hetero-label distances in proteins. We also devote a section to possible artifacts arising from channel crosstalk and provide few examples of applications in structural biology.


Subject(s)
Proteins , Electron Spin Resonance Spectroscopy/methods , Proteins/chemistry , Spin Labels
10.
J Magn Reson ; 338: 107186, 2022 05.
Article in English | MEDLINE | ID: mdl-35344921

ABSTRACT

This is a methodological guide to the use of deep neural networks in the processing of pulsed dipolar spectroscopy (PDS) data encountered in structural biology, organic photovoltaics, photosynthesis research, and other domains featuring long-lived radical pairs and paramagnetic metal ions. PDS uses distance dependence of magnetic dipolar interactions; measuring a single well-defined distance is straightforward, but extracting distance distributions is a hard and mathematically ill-posed problem requiring careful regularisation and background fitting. Neural networks do this exceptionally well, but their "robust black box" reputation hides the complexity of their design and training - particularly when the training dataset is effectively infinite. The objective of this paper is to give insight into training against simulated databases, to discuss network architecture choices, to describe options for handling DEER (double electron-electron resonance) and RIDME (relaxation-induced dipolar modulation enhancement) experiments, and to provide a practical data processing flowchart.


Subject(s)
Neural Networks, Computer , Electron Spin Resonance Spectroscopy/methods
11.
J Am Chem Soc ; 143(43): 17875-17890, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34664948

ABSTRACT

Distance distribution information obtained by pulsed dipolar EPR spectroscopy provides an important contribution to many studies in structural biology. Increasingly, such information is used in integrative structural modeling, where it delivers unique restraints on the width of conformational ensembles. In order to ensure reliability of the structural models and of biological conclusions, we herein define quality standards for sample preparation and characterization, for measurements of distributed dipole-dipole couplings between paramagnetic labels, for conversion of the primary time-domain data into distance distributions, for interpreting these distributions, and for reporting results. These guidelines are substantiated by a multi-laboratory benchmark study and by analysis of data sets with known distance distribution ground truth. The study and the guidelines focus on proteins labeled with nitroxides and on double electron-electron resonance (DEER aka PELDOR) measurements and provide suggestions on how to proceed analogously in other cases.


Subject(s)
Cyclic N-Oxides/chemistry , Electron Spin Resonance Spectroscopy/standards , Proteins/chemistry , Spin Labels , Benchmarking , Electron Spin Resonance Spectroscopy/methods , Reproducibility of Results
12.
J Chem Theory Comput ; 17(10): 6366-6386, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34516119

ABSTRACT

The isotropic hyperfine coupling constant (HFCC, Aiso) of a pH-sensitive spin probe in a solution, HMI (2,2,3,4,5,5-hexamethylimidazolidin-1-oxyl, C9H19N2O) in water, is computed using an ensemble of state-of-the-art computational techniques and is gauged against X-band continuous wave electron paramagnetic resonance (EPR) measurement spectra at room temperature. Fundamentally, the investigation aims to delineate the cutting edge of current first-principles-based calculations of EPR parameters in aqueous solutions based on using rigorous statistical mechanics combined with correlated electronic structure techniques. In particular, the impact of solvation is described by exploiting fully atomistic, RISM integral equation, and implicit solvation approaches as offered by ab initio molecular dynamics (AIMD) of the periodic bulk solution (using the spin-polarized revPBE0-D3 hybrid functional), embedded cluster reference interaction site model integral equation theory (EC-RISM), and polarizable continuum embedding (using CPCM) of microsolvated complexes, respectively. HFCCs are obtained from efficient coupled cluster calculations (using open-shell DLPNO-CCSD theory) as well as from hybrid density functional theory (using revPBE0-D3). Re-solvation of "vertically desolvated" spin probe configuration snapshots by EC-RISM embedding is shown to provide significantly improved results compared to CPCM since only the former captures the inherent structural heterogeneity of the solvent close to the spin probe. The average values of the Aiso parameter obtained based on configurational statistics using explicit water within AIMD and from EC-RISM solvation are found to be satisfactorily close. Using either such explicit or RISM solvation in conjunction with DLPNO-CCSD calculations of the HFCCs provides an average Aiso parameter for HMI in aqueous solution at 300 K and 1 bar that is in good agreement with the experimentally determined one. The developed computational strategy is general in the sense that it can be readily applied to other spin probes of similar molecular complexity, to aqueous solutions beyond ambient conditions, as well as to other solvents in the longer run.

13.
J Phys Chem Lett ; 12(14): 3679-3684, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33829785

ABSTRACT

Electron paramagnetic resonance (EPR) spectroscopy is an established technique to site-specifically monitor conformational changes of spin-labeled biomolecules. Emerging in-cell EPR approaches aiming to address spin-labeled proteins in their native environment still struggle to reach a broad applicability and to target physiologically relevant protein concentrations. Here, we present a comparative in vitro and in-cell double electron-electron resonance (DEER) study demonstrating that nanomolar protein concentrations are at reach to measure distances up to 4.5 nm between protein sites carrying commercial gadolinium spin labels.


Subject(s)
Electrons , Proteins/analysis , Electron Spin Resonance Spectroscopy , HEK293 Cells , Humans
14.
Structure ; 29(2): 114-124.e3, 2021 02 04.
Article in English | MEDLINE | ID: mdl-32966763

ABSTRACT

Bcl-2 proteins orchestrate the mitochondrial pathway of apoptosis, pivotal for cell death. Yet, the structural details of the conformational changes of pro- and antiapoptotic proteins and their interactions remain unclear. Pulse dipolar spectroscopy (double electron-electron resonance [DEER], also known as PELDOR) in combination with spin-labeled apoptotic Bcl-2 proteins unveils conformational changes and interactions of each protein player via detection of intra- and inter-protein distances. Here, we present the synthesis and characterization of pro-apoptotic BimBH3 peptides of different lengths carrying cysteines for labeling with nitroxide or gadolinium spin probes. We show by DEER that the length of the peptides modulates their homo-interactions in the absence of other Bcl-2 proteins and solve by X-ray crystallography the structure of a BimBH3 tetramer, revealing the molecular details of the inter-peptide interactions. Finally, we prove that using orthogonal labels and three-channel DEER we can disentangle the Bim-Bim, Bcl-xL-Bcl-xL, and Bim-Bcl-xL interactions in a simplified interactome.


Subject(s)
Bcl-2-Like Protein 11/chemistry , Protein Multimerization , Animals , Apoptosis , Bcl-2-Like Protein 11/metabolism , Binding Sites , Humans , Mice , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Rats , bcl-X Protein/chemistry , bcl-X Protein/metabolism
15.
FEBS Lett ; 594(23): 3839-3856, 2020 12.
Article in English | MEDLINE | ID: mdl-33219535

ABSTRACT

ATP-binding cassette (ABC) exporters have been studied now for more than four decades, and recent structural investigation has produced a large number of protein database entries. Yet, important questions about how ABC exporters function at the molecular level remain debated, such as which are the molecular recognition hotspots and the allosteric couplings dynamically regulating the communication between the catalytic cycle and the export of substrates. This conundrum mainly arises from technical limitations confining all research to in vitro analysis of ABC transporters in detergent solutions or embedded in membrane-mimicking environments. Therefore, a largely unanswered question is how ABC exporters operate in situ, namely in the native membrane context of a metabolically active cell. This review focuses on novel mechanistic insights into type I ABC exporters gained through a unique combination of structure determination, biochemical characterization, generation of conformation-specific nanobodies/sybodies and double electron-electron resonance.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Electron Spin Resonance Spectroscopy , Animals , Humans , In Vitro Techniques , Structure-Activity Relationship
16.
Proc Natl Acad Sci U S A ; 117(5): 2441-2448, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31964841

ABSTRACT

Nanobodies are emerging tools in a variety of fields such as structural biology, cell imaging, and drug discovery. Here we pioneer the use of their spin-labeled variants as reporters of conformational dynamics of membrane proteins using DEER spectroscopy. At the example of the bacterial ABC transporter TM287/288, we show that two gadolinium-labeled nanobodies allow us to quantify, via analysis of the modulation depth of DEER traces, the fraction of transporters adopting the outward-facing state under different experimental conditions. Additionally, we quantitatively follow the interconversion from the outward- to the inward-facing state in the conformational ensemble under ATP turnover conditions. We finally show that the specificity of the nanobodies for the target protein allows the direct attainment of structural information on the wild-type TM287/288 expressed in cellular membranes without the need to purify or label the investigated membrane protein.


Subject(s)
Cell Membrane/chemistry , Electron Spin Resonance Spectroscopy/methods , Membrane Proteins/chemistry , Single-Domain Antibodies/chemistry , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , Binding Sites , Biocompatible Materials , Cell Membrane/metabolism , Gadolinium/chemistry , Membrane Proteins/metabolism , Protein Binding , Protein Conformation , Single-Domain Antibodies/metabolism , Spin Labels
17.
Magn Reson (Gott) ; 1(2): 285-299, 2020.
Article in English | MEDLINE | ID: mdl-37904822

ABSTRACT

Double electron-electron resonance (DEER) spectroscopy applied to orthogonally spin-labeled biomolecular complexes simplifies the assignment of intra- and intermolecular distances, thereby increasing the information content per sample. In fact, various spin labels can be addressed independently in DEER experiments due to spectroscopically nonoverlapping central transitions, distinct relaxation times, and/or transition moments; hence, they are referred to as spectroscopically orthogonal. Molecular complexes which are, for example, orthogonally spin-labeled with nitroxide (NO) and gadolinium (Gd) labels give access to three distinct DEER channels that are optimized to selectively probe NO-NO, NO-Gd, and Gd-Gd distances. Nevertheless, it has been previously recognized that crosstalk signals between individual DEER channels can occur, for example, when a Gd-Gd distance appears in a DEER channel optimized to detect NO-Gd distances. This is caused by residual spectral overlap between NO and Gd spins which, therefore, cannot be considered as perfectly orthogonal. Here, we present a systematic study on how to identify and suppress crosstalk signals that can appear in DEER experiments using mixtures of NO-NO, NO-Gd, and Gd-Gd molecular rulers characterized by distinct, nonoverlapping distance distributions. This study will help to correctly assign the distance peaks in homo- and heterocomplexes of biomolecules carrying not perfectly orthogonal spin labels.

18.
Sci Rep ; 9(1): 13013, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506457

ABSTRACT

Bax is a Bcl-2 protein crucial for apoptosis initiation and execution, whose active conformation is only partially understood. Dipolar EPR spectroscopy has proven to be a valuable tool to determine coarse-grained models of membrane-embedded Bcl-2 proteins. Here we show how the combination of spectroscopically distinguishable nitroxide and gadolinium spin labels and Double Electron-Electron Resonance can help to gain new insights into the quaternary structure of active, membrane-embedded Bax oligomers. We show that attaching labels bulkier than the conventional MTSL may affect Bax fold and activity, depending on the protein/label combination. However, we identified a suitable pair of spectroscopically distinguishable labels, which allows to study complex distance networks in the oligomers that could not be disentangled before. Additionally, we compared the stability of the different spin-labeled protein variants in E. coli and HeLa cell extracts. We found that the gem-diethyl nitroxide-labeled Bax variants were reasonably stable in HeLa cell extracts. However, when transferred into human cells, Bax was found to be mislocalized, thus preventing its characterization in a physiological environment. The successful use of spectroscopically distinguishable labels on membrane-embedded Bax-oligomers opens an exciting new path towards structure determination of membrane-embedded homo- or hetero-oligomeric Bcl-2 proteins via EPR.


Subject(s)
Cell Membrane/metabolism , Electron Spin Resonance Spectroscopy/methods , Gadolinium/chemistry , Nitrogen Oxides/chemistry , Spin Labels , bcl-2-Associated X Protein/chemistry , bcl-2-Associated X Protein/metabolism , Escherichia coli/metabolism , HeLa Cells , Humans
19.
ChemistryOpen ; 8(8): 1057-1065, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31463171

ABSTRACT

The availability of bioresistant spin labels is crucial for the optimization of site-directed spin labeling protocols for EPR structural studies of biomolecules in a cellular context. As labeling can affect proteins' fold and/or function, having the possibility to choose between different spin labels will increase the probability to produce spin-labeled functional proteins. Here, we report the synthesis and characterization of iodoacetamide- and maleimide-functionalized spin labels based on the gem-diethyl pyrroline structure. The two nitroxide labels are compared to conventional gem-dimethyl analogs by site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy, using two water soluble proteins: T4 lysozyme and Bid. To foster their use for structural studies, we also present rotamer libraries for these labels, compatible with the MMM software. Finally, we investigate the "true" biocompatibility of the gem-diethyl probes comparing the resistance towards chemical reduction of the NO group in ascorbate solutions and E. coli cytosol at different spin concentrations.

20.
ChemistryOpen ; 8(8): 1035, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31406651

ABSTRACT

Invited for this month's cover picture is the group of Professor Enrica Bordignon at the Ruhr University Bochum. The cover picture shows an artistic view of E. coli cells and two spin-labeled recombinantly produced proteins, which can be inserted into the cells for EPR studies. The primary sequence of the proteins is schematically shown with the one-letter amino acid code, and cysteine residues are functionalized with the two new gem diethyl nitroxide spin labels designed to better sustain the reducing cellular environment. Read the full text of their Full Paper at 10.1002/open.201900119.

SELECTION OF CITATIONS
SEARCH DETAIL
...