Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 16994, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37813886

ABSTRACT

Tissues are complex environments where different cell types are in constant interaction with each other and with non-cellular components. Preserving the spatial context during proteomics analyses of tissue samples has become an important objective for different applications, one of the most important being the investigation of the tumor microenvironment. Here, we describe a multiplexed protein biomarker detection method on the COMET instrument, coined sequential ImmunoFluorescence (seqIF). The fully automated method uses successive applications of antibody incubation and elution, and in-situ imaging enabled by an integrated microscope and a microfluidic chip that provides optimized optical access to the sample. We show seqIF data on different sample types such as tumor and healthy tissue, including 40-plex on a single tissue section that is obtained in less than 24 h, using off-the-shelf antibodies. We also present extensive characterization of the developed method, including elution efficiency, epitope stability, repeatability and reproducibility, signal uniformity, and dynamic range, in addition to marker and panel optimization strategies. The streamlined workflow using off-the-shelf antibodies, data quality enabling downstream analysis, and ease of reaching hyperplex levels make seqIF suitable for immune-oncology research and other disciplines requiring spatial analysis, paving the way for its adoption in clinical settings.


Subject(s)
Antibodies , Proteomics , Proteomics/methods , Reproducibility of Results , Fluorescent Antibody Technique , Biomarkers
2.
Nat Biotechnol ; 41(10): 1405-1409, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36823353

ABSTRACT

In this study, we extended co-indexing of transcriptomes and epitopes (CITE) to the spatial dimension and demonstrated high-plex protein and whole transcriptome co-mapping. We profiled 189 proteins and whole transcriptome in multiple mouse tissue types with spatial CITE sequencing and then further applied the method to measure 273 proteins and transcriptome in human tissues, revealing spatially distinct germinal center reactions in tonsil and early immune activation in skin at the Coronavirus Disease 2019 mRNA vaccine injection site.


Subject(s)
Single-Cell Analysis , Transcriptome , Animals , Mice , Humans , Transcriptome/genetics , Epitopes , RNA, Messenger , Gene Expression Profiling/methods
3.
Res Sq ; 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35378748

ABSTRACT

We present spatial-CITE-seq for high-plex protein and whole transcriptome co-mapping, which was firstly demonstrated for profiling 198 proteins and transcriptome in multiple mouse tissue types. It was then applied to human tissues to measure 283 proteins and transcriptome that revealed spatially distinct germinal center reaction in tonsil and early immune activation in skin at the COVID-19 mRNA vaccine injection site. Spatial-CITE-seq may find a range of applications in biomedical research.

4.
Heliyon ; 6(12): e05574, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33319088

ABSTRACT

Mitogen-Activated Protein Kinases (MAPKs) control a wide array of cellular functions by transducing extracellular information into defined biological responses. In order to understand how these pathways are regulated, dynamic single cell measurements are highly needed. Fluorescence microscopy is well suited to perform these measurements. However, more dynamic and sensitive biosensors that allow the quantification of signaling activity in living mammalian cells are required. We have engineered a synthetic fluorescent substrate for human MAPKs (ERK, JNK and p38) that relocates from the nucleus to the cytoplasm when phosphorylated by the kinases. We demonstrate that this reporter displays an improved response compared to other relocation biosensors. This assay allows to monitor the heterogeneity in the MAPK response in a population of isogenic cells, revealing pulses of ERK activity upon a physiological EGFR stimulation. We show applicability of this approach to the analysis of multiple cancer cell lines and primary cells as well as its application in vivo to developing tumors. Using this ERK biosensor, dynamic single cell measurements with high temporal resolution can be obtained. These MAPK reporters can be widely applied to the analysis of molecular mechanisms of MAPK signaling in healthy and diseased state, in cell culture assays or in vivo.

5.
Nat Commun ; 11(1): 5126, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33046701

ABSTRACT

Cancer associated fibroblasts (CAFs) are a key component of the tumor microenvironment. Genomic alterations in these cells remain a point of contention. We report that CAFs from skin squamous cell carcinomas (SCCs) display chromosomal alterations, with heterogeneous NOTCH1 gene amplification and overexpression that also occur, to a lesser extent, in dermal fibroblasts of apparently unaffected skin. The fraction of the latter cells harboring NOTCH1 amplification is expanded by chronic UVA exposure, to which CAFs are resistant. The advantage conferred by NOTCH1 amplification and overexpression can be explained by NOTCH1 ability to block the DNA damage response (DDR) and ensuing growth arrest through suppression of ATM-FOXO3a association and downstream signaling cascade. In an orthotopic model of skin SCC, genetic or pharmacological inhibition of NOTCH1 activity suppresses cancer/stromal cells expansion. Here we show that NOTCH1 gene amplification and increased expression in CAFs are an attractive target for stroma-focused anti-cancer intervention.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Gene Amplification , Receptor, Notch1/metabolism , Skin Neoplasms/metabolism , Animals , DNA Damage , Female , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Humans , Mice , Mice, SCID , Receptor, Notch1/genetics , Skin/metabolism , Skin Neoplasms/genetics
6.
Cell Rep ; 28(9): 2358-2372.e6, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31461652

ABSTRACT

Heterogeneity of cancer-associated fibroblasts (CAFs) can result from activation of distinct signaling pathways. We show that in primary human dermal fibroblasts (HDFs), fibroblast growth factor (FGF) and transforming growth factor ß (TGF-ß) signaling oppositely modulate multiple CAF effector genes. Genetic abrogation or pharmacological inhibition of either pathway results in induction of genes responsive to the other, with the ETV1 transcription factor mediating the FGF effects. Duality of FGF/TGF-ß signaling and differential ETV1 expression occur in multiple CAF strains and fibroblasts of desmoplastic versus non-desmoplastic skin squamous cell carcinomas (SCCs). Functionally, HDFs with opposite TGF-ß versus FGF modulation converge on promoting cancer cell proliferation. However, HDFs with increased TGF-ß signaling enhance invasive properties and epithelial-mesenchymal transition (EMT) of SCC cells, whereas HDFs with increased FGF signaling promote macrophage infiltration. The findings point to a duality of FGF versus TGF-ß signaling in distinct CAF populations that promote cancer development through modulation of different processes.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Carcinoma, Squamous Cell/metabolism , DNA-Binding Proteins/metabolism , Fibroblast Growth Factors/metabolism , Signal Transduction , Skin Neoplasms/metabolism , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , Animals , Carcinoma, Squamous Cell/pathology , Cells, Cultured , Child, Preschool , Epithelial-Mesenchymal Transition , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Skin Neoplasms/pathology
7.
Nat Commun ; 10(1): 3884, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31467287

ABSTRACT

Genomic instability is a hallmark of cancer. Whether it also occurs in Cancer Associated Fibroblasts (CAFs) remains to be carefully investigated. Loss of CSL/RBP-Jκ, the effector of canonical NOTCH signaling with intrinsic transcription repressive function, causes conversion of dermal fibroblasts into CAFs. Here, we find that CSL down-modulation triggers DNA damage, telomere loss and chromosome end fusions that also occur in skin Squamous Cell Carcinoma (SCC)-associated CAFs, in which CSL is decreased. Separately from its role in transcription, we show that CSL is part of a multiprotein telomere protective complex, binding directly and with high affinity to telomeric DNA as well as to UPF1 and Ku70/Ku80 proteins and being required for their telomere association. Taken together, the findings point to a central role of CSL in telomere homeostasis with important implications for genomic instability of cancer stromal cells and beyond.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Carcinoma, Squamous Cell/metabolism , Fibroblasts/metabolism , Genomic Instability , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Telomere/metabolism , Carcinoma, Squamous Cell/genetics , DNA Damage , DNA-Binding Proteins , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HEK293 Cells , Homeostasis , Humans , Ku Autoantigen/metabolism , Membrane Proteins , Molecular Docking Simulation , Mutagenesis , RNA Helicases/metabolism , Receptors, Notch/metabolism , Signal Transduction , Skin/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Trans-Activators/metabolism
8.
J Clin Invest ; 128(12): 5531-5548, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30395538

ABSTRACT

The aging-associated increase of cancer risk is linked with stromal fibroblast senescence and concomitant cancer-associated fibroblast (CAF) activation. Surprisingly little is known about the role of androgen receptor (AR) signaling in this context. We have found downmodulated AR expression in dermal fibroblasts underlying premalignant skin cancer lesions (actinic keratoses and dysplastic nevi) as well as in CAFs from the 3 major skin cancer types, squamous cell carcinomas (SCCs), basal cell carcinomas, and melanomas. Functionally, decreased AR expression in primary human dermal fibroblasts (HDFs) from multiple individuals induced early steps of CAF activation, and in an orthotopic skin cancer model, AR loss in HDFs enhanced tumorigenicity of SCC and melanoma cells. Forming a complex, AR converged with CSL/RBP-Jκ in transcriptional repression of key CAF effector genes. AR and CSL were positive determinants of each other's expression, with BET inhibitors, which counteract the effects of decreased CSL, restoring AR expression and activity in CAFs. Increased AR expression in these cells overcame the consequences of CSL loss and was by itself sufficient to block the growth and tumor-enhancing effects of CAFs on neighboring cancer cells. As such, the findings establish AR as a target for stroma-focused cancer chemoprevention and treatment.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Neoplasm Proteins/metabolism , Receptors, Androgen/metabolism , Repressor Proteins/metabolism , Skin Neoplasms/metabolism , Transcriptional Activation , Animals , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred NOD , Neoplasm Proteins/genetics , Receptors, Androgen/genetics , Repressor Proteins/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology
9.
J Exp Med ; 214(8): 2349-2368, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28684431

ABSTRACT

Cancer-associated fibroblasts (CAFs) are important for tumor initiation and promotion. CSL, a transcriptional repressor and Notch mediator, suppresses CAF activation. Like CSL, ATF3, a stress-responsive transcriptional repressor, is down-modulated in skin cancer stromal cells, and Atf3 knockout mice develop aggressive chemically induced skin tumors with enhanced CAF activation. Even at low basal levels, ATF3 converges with CSL in global chromatin control, binding to few genomic sites at a large distance from target genes. Consistent with this mode of regulation, deletion of one such site 2 Mb upstream of IL6 induces expression of the gene. Observed changes are of translational significance, as bromodomain and extra-terminal (BET) inhibitors, unlinking activated chromatin from basic transcription, counteract the effects of ATF3 or CSL loss on global gene expression and suppress CAF tumor-promoting properties in an in vivo model of squamous cancer-stromal cell expansion. Thus, ATF3 converges with CSL in negative control of CAF activation with epigenetic changes amenable to cancer- and stroma-focused intervention.


Subject(s)
Activating Transcription Factor 3/physiology , Cancer-Associated Fibroblasts/physiology , Chromatin/physiology , Muscle Proteins/physiology , Animals , Carcinoma, Squamous Cell/physiopathology , Keratinocytes/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Skin Neoplasms/physiopathology
11.
Nat Cell Biol ; 17(9): 1193-204, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26302407

ABSTRACT

Stromal fibroblast senescence has been linked to ageing-associated cancer risk. However, density and proliferation of cancer-associated fibroblasts (CAFs) are frequently increased. Loss or downmodulation of the Notch effector CSL (also known as RBP-Jκ) in dermal fibroblasts is sufficient for CAF activation and ensuing keratinocyte-derived tumours. We report that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as a direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is downmodulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas, whereas p53 expression and function are downmodulated only in the latter, with paracrine FGF signalling as the probable culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effectors and promotes stromal and cancer cell expansion. The findings support a CAF activation-stromal co-evolution model under convergent CSL-p53 control.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Fibroblasts/physiology , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Skin Neoplasms/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cellular Senescence , Down-Regulation , Gene Expression Regulation, Neoplastic , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Mice , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction , Skin Neoplasms/pathology , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...