Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vector Borne Dis ; 61(1): 101-106, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38648411

ABSTRACT

BACKGROUND OBJECTIVES: Dengue is a major vector-borne disease having public health importance. It is caused by Dengue Virus (DENV) and is transmitted by mosquitoes of Aedes species. With the unavailability of a vaccine, vector control remains the only preventive measure for dengue. Studies have already been conducted to establish the presence of dengue vectors in the north-eastern states of India. However, limited studies have been conducted in Tripura state. In the present study we aimed to identify the preferred breeding habitats of dengue vectors in the state. METHODS: Clinical case data of dengue since the last five years was studied and the areas with the highest case numbers were identified. Entomological investigation was carried out in areas reporting the highest number of cases. Larvae were collected from the breeding habitats using standard protocol followed by morphological and molecular identification. Further, House index (HI), Container index (CI) and Pupal index (PI) were determined. The positive pools were then processed for incrimination for the presence of dengue virus. Calculation of entomological indices was done. RESULTS: Of the total 815 containers searched, 36.80% containers were positive for mosquito larvae. Among the immature mosquito collection, 836 adults emerged and were identified as Aedes albopictus using standard taxonomic keys followed by molecular methods. HI, CI and PI, varied from 15.38% to 100%, 21% to 31.04 %, and 2.93% to 110.53% respectively. However, none of the pools was positive for dengue virus. INTERPRETATION CONCLUSION: The present study identified Ae. albopictus as a potential vector of dengue in Tripura. The study gave important insights on the preferred larval habitats and provides information on the indication of displacement of Ae. albopictus from rural to urban and semi-urban areas. However, longitudinal studies for longer time frame are necessary for any conclusive remarks.


Subject(s)
Aedes , Dengue Virus , Dengue , Ecosystem , Larva , Mosquito Vectors , Pupa , Animals , India , Larva/virology , Larva/growth & development , Larva/physiology , Mosquito Vectors/virology , Mosquito Vectors/physiology , Mosquito Vectors/growth & development , Aedes/virology , Aedes/physiology , Aedes/growth & development , Pupa/virology , Pupa/growth & development , Dengue/transmission , Humans , Female
2.
Med Chem ; 20(1): 78-91, 2024.
Article in English | MEDLINE | ID: mdl-37594099

ABSTRACT

INTRODUCTION: Inflammation can be defined as a complex biological response that is produced by body tissues to harmful agents like pathogens, irritants, and damaged cells and thereby acts as a protective response incorporating immune cells, blood vessels, and molecular mediators. Histamine, serotonin, bradykinin, leukotrienes (LTB4), prostaglandins (PGE2), prostacyclins, reactive oxygen species, proinflammatory cytokines like IL-1, IL-11, TNF- anti-inflammatory cytokines like IL-4, IL-10, IL-11, IL-6 and IL-13, etc. all have different effects on both pro and anti-inflammatory mediators. Incorporation of combinatorial chemistry and computational studies have helped the researchers to design xanthones moieties with high selectivity that can serve as a lead compound and help develop potential compounds that can act as effective COX-2 inhibitors. The study aims to design and develop different series of substituted hydroxyxanthone derivatives with anti-inflammatory potential. METHODS: The partially purified synthetic xanthone derivatives were orally administered to the carrageenan induced paw oedemic rat models at the dose of 100 mg/kg, and their effect in controlling the degree of inflammation was measured at the time interval of 30 min, 1, 2, 3, 4 and 6 hrs. respectively. Further, these compounds were also subjected to modern analytical studies like UV, IR, NMR and mass spectrometry or their characterization. RESULTS: The results drawn out of the in silico, in vitro, in vivo and analytical studies concluded that the hydroxyxanthone derivatives can obstruct the enzyme COX-2 and produce anti-inflammatory action potentially. CONCLUSION: With the aim to evaluate the compounds for their anti-inflammatory activity, it was observed that the newly designed xanthonic compounds also possess a safe toxicity margin and hence can be utilized by the researchers to develop hybrid xanthonic moieties that can specifically target the enzyme COX-2.


Subject(s)
Cyclooxygenase 2 Inhibitors , Xanthones , Animals , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Carrageenan/therapeutic use , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Cytokines , Edema/chemically induced , Edema/drug therapy , Inflammation/drug therapy , Interleukin-11/metabolism , Quantitative Structure-Activity Relationship , Xanthones/pharmacology
3.
Mycoses ; 66(9): 737-754, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37212186

ABSTRACT

Aspergillus fumigatus is an opportunistic pathogen that primarily affects the lungs and frequently elicits an allergic immune response in human hosts via inhalation of its airborne asexual spores (conidia). In immunocompromised individuals, the conidia of this fungus can germinate in the lung and result in severe systemic infections characterised by widespread tissue and organ damage. Conversely, in healthy hosts, the innate immune system is instrumental in eliminating the conidia and preventing disease progression. As with numerous other pathogenic fungi, A. fumigatus possesses a set of virulence factors that facilitate its infective mechanism and the circumvention of immune defences in susceptible hosts. The intrinsic capacity of A. fumigatus to form complex 3D-structured biofilms, both on biotic and abiotic surfaces, represents a key determinant of its evasion of the host immune system and resistance to antifungal drugs. This review delineates the pivotal role of A. fumigatus biofilm structure and function as a significant virulence factor in pathogenic infections, such as aspergilloma and invasive pulmonary aspergillosis (IPA). Additionally, we discuss the importance for the development of novel antifungal drugs as drug-resistant strains continue to evolve. Furthermore, co-infections of A. fumigatus with other nosocomial pathogens have a substantial impact on patient's health outcomes. In this context, we provide a brief overview of COVID-19-associated pulmonary aspergillosis (CAPA), a recently documented condition that has gained attention due to its associated high degree of severity.


Subject(s)
Aspergillosis , COVID-19 , Pulmonary Aspergillosis , Humans , Aspergillus fumigatus , Aspergillosis/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Virulence , Virulence Factors , Immunity , Biofilms
4.
3 Biotech ; 12(6): 136, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35646504

ABSTRACT

Soil is an integral part of the ecosystem because it serves as a habitat for various microorganisms and lays the foundation for supporting plant growth and development. Therefore, factors such as increased anthropogenic activities hand by hand with other natural processes that harm the ecosystem may eventually lead to a decline in soil quality and fertility, hindering the growth of plants and soil microbial communities. Given the current global scenario of increasing human intervention, it is essential to find effective measures and reliable technologies to restore soil quality. Biochar is an emerging soil ameliorant employed for soil health restoration and is primarily generated through the anoxygenic pyrolysis of biomass. The biochar application in soil remediation may be beneficial due to biochar's unique physicochemical properties, including high carbon and metal fixation abilities. In addition, biochar possesses abilities to reduce the plant's environmental stress injuries. This review briefly overviewed the ingredients and mechanism of biochar productions. We then emphatically reviewed the advances in biochar applications in soil bioremediation, soil microflora growth stimulation, and the alleviation of various biotic and abiotic stresses in plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...